

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Foundations of Open Science Skills 2021

Foundational Open Science Skills (FOSS) is a novel, camp-style training designed to prepare principal investigators and their lab teams, both new and established, to meet the growing expectations of funding agencies, publishers, and research institutions for scientific reproducibility and data accessibility.

[image: foss-main]

Expected outcomes:

	Proficiently organize your lab, communications, and research with productivity software

	Capably scale out your computation from laptop to cloud and HPC systems

	Skillfully manage the data lifecycle for open science and reproducibility

	Connect with colleagues across institutional boundaries and research domains

	Engage with the community of Open Science practitioners

Note

There are no pre-requisites for FOSS, but the course will cover a lot of material in a short time. Participants who have limited computational experience should try to view the Software Carpentry Core Lessons [https://software-carpentry.org/lessons/] before attending.

By working through an example project relevant to your interests, you will practice open science skills using CyVerse, GitHub, R or Python, and other resources. At the end of the course, you and your team will present a plan for how to integrate open science into your research, lab, or other areas of your choosing.

	Workshop Home

Before FOSS Starts

	Pre-FOSS Setup

Key Information

	Schedule

	Instructors [https://www.cyverse.org/foss#instructors]

	Code of Conduct

	Open Science Introductory Activity

	Goals and Approach

	Glossary & Acronyms

Using CyVerse

	About CyVerse

	Accessing Data Store

	Discovery Environment - Data Management

Cyberinfrastructure

	Introduction to Cloud Computing

	Atmosphere

	Research Cyberinfrastructure associated with CyVerse

	Other Cyberinfrastructure Projects

Data Management

	Data Management Overview

	FAIR Data

	Data Management Plans (DMP)

	Data Management Tools

Essential Skills

	Discovery Environment - Data Analysis

	Discovery Environment - Tools & Apps

	Discovery Environment - VICE

	Command Line and the Unix Shell

	Basics of Linux

Reproducible Science

	Introduction to Reproducible Science

	Communication

	GitHub

	Websites & Documentation

	GitHub Pages - a quick start

Containers

	Introduction to containers

	Launching a Docker app on Atmosphere

	Introduction to Docker

	Advanced Docker

CyVerse Homepage: http://www.cyverse.org

Funding and Citations

CyVerse is funded by the National Science Foundation under
Award Numbers DBI-0735191, DBI-1265383, and DBI-1743442.

Please cite CyVerse appropriately when you make use of our resources,
CyVerse citation policy [http://www.cyverse.org/cite-cyverse]

License

Documentation contained in this repo is made available under CC BY 4.0 License: https://creativecommons.org/licenses/by/4.0/legalcode

Fix or improve this documentation

	Search for an answer:
CyVerse Learning Center

	Ask us for help:
click [image: Intercom] on the lower right-hand side of the page

	Report an issue or submit a change:
Github Repo Link

	Send feedback: Learning@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

About CyVerse

CyVerse Vision: Transforming science through data-driven discovery.

CyVerse Mission: Design, deploy, and expand a national
cyberinfrastructure for life sciences research and train scientists in
its use.

CyVerse provides life scientists with powerful computational
infrastructure to handle huge datasets and complex analyses, thus
enabling data-driven discovery. Our powerful extensible platforms
provide data storage, bioinformatics tools, image analyses, cloud
services, APIs, and more.

Originally created as the iPlant Collaborative to serve
U.S. plant science communities, the cyberinfrastructure we have built is germane
to all life sciences disciplines and works equally well on data from
plants, animals, or microbes. Thus, iPlant was renamed CyVerse to reflect the broader community now served by our infrastructure. By democratizing access to supercomputing
capabilities, we provide a crucial resource to enable scientists to find
solutions for the future. CyVerse is of, by, and for the community, and community-driven needs
shape our mission. We rely on your feedback to provide the
infrastructure you need most to advance your science, development, and
educational agenda.

CyVerse Homepage: http://www.cyverse.org

Evolution of CyVerse

[image: evolcyverse]

CyVerse is an NSF-funded project. The project began in 2008 as ‘iPlant’ with the mission of ‘empowering a new plant biology’. Funding was renewed in 2013 for another 5 years with the new mission of ‘cyberinfrastructure for life sciences’. In 2016 the name of the project was changed from ‘iPlant’ to ‘CyVerse’ to reflect its role in all life scieneces, not just plants. In 2018 CyVerse was renewed for another 5 years with our current mission: ‘to design, deploy, and expand a national Cyberinfrastructure for Life Sciences research, and to train scientists in its use’.

Over the past 10 years CyVerse priorities have focused on genomics and transcriptomics tools that were needed to deal with the huge increase in high-throughput seqeuncing data. While that is still a priority, CyVerse has since expanded to include image and geospatial analysis tools. CyVerse is built for data.

What is Cyberinfrastructure?

	Cyberinfrastructure is a combination of

	
	platforms, tools and datasets researchers need to do their work

	storage and compute hardware necessary for modern analyses

	people who provide training and support

The CyVerse cyberinfrastructure can be thought of in layers. The bottom layer (on which everything else is built) consists of the hardware resources. On top of that are the services necessary to make a functional system. The next layer represents extensible services, or those parts of the system that may be adopted and used by thrid parties. Most users will interact primarily with the top layer which represents the various analysis and distribution platforms. While the bottom layers are the most flexible, the top layers are the most user-friendly.

[image: layer cake]

User Portal [https://user.cyverse.org]

The CyVerse user portal allows users to manage their accounts, subscriptions and events in a single place. Some things you can do here include:

	Create and manage your CyVerse account

	
	Reset your password

	Add an email address to your account

	Change your name or username

	Change your institution, department, position

	Change your CyVerse subscriptions

	Manage access to CyVerse platforms/services

	
	Some CyVerse services (such as Atmosphere) have additional restrictions and access must be ‘turned on’.

Manage workshops you’ve attended or hosted

Access ‘Powered by CyVerse’ projects

	User portal forms

	
	Request a Data Store allocation increase

	Request a community released data folder

	Request a workshop or webinar

	Reserve Atmosphere cloud resources for workshops or classes

	Request an External Collaborative Partnership (ECP)

	Get Powered by CyVerse

Data Store [https://de.cyverse.org/de/]

[image: datastorelogo]

Securely store data for active analyses or sharing with your collaborators.

	
	Upload, download and share your data

	
	DE simple upload/download. Convenient but not good for large files.

	Cyberduck is a third-party software with graphic interface for transferring data. Available for Mac and Windows.

	iCommands is more powerful/flexible, good for large transfers but requires some command line knowledge

	Data limit of 100 GB (can request increase up to 10 TB)

	Data storage is integrated into the Discovery Environment (where analyses are run).

	Share your data with collaborators

	Data Store guide [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/]

Discovery Environment [https://de.cyverse.org/de/]

[image: DElogo]

Use hundreds of bioinformatics apps and manage data in a simple web interface.

	Provides graphic interface for bioinformatics tools for scientists with no command line experience

	
	User extensible. Users can add their own tools and make their own apps.

	
	Share them with collaborators

	Publish them

	VICE (Visual and Interactive Computing Environment) for interactive use of Jupyter notebooks, RStudio and RShiny.

	Integrated with the Data Store for ease of use

	Share your analyses with your collaborators

	DE guide [http://learning.cyverse.org/projects/cyverse-discovery-environment-guide/]

	VICE documentation [https://cyverse-visual-interactive-computing-environment.readthedocs-hosted.com/en/latest/index.html]

Atmosphere [https://atmo.cyverse.org/application/images]

[image: atmologo]

Create a custom cloud-based scientific analysis platform or use a ready-made one for your area of scientific interest.

	Cloud computing for life sciences

	100s of pre-built images

	Fully customize your software setup

	Choose (or build) an image that best suits your needs

	Atmosphere guide [https://cyverse-atmosphere-guide.readthedocs-hosted.com/en/latest/]

Bisque [https://bisque.cyverse.org/client_service/]

[image: bisquelogo]

Bio-Image Semantic Query User Environment for the exchange and exploration of image data

	Exchange, explore, and analyze biological images and their metadata.

	Image data analysis and management

	Bisque manual [https://wiki.cyverse.org/wiki/display/BIS]

DNA Subway [https://dnasubway.cyverse.org/]

[image: dnasubwaylogo]

Teach classroom-friendly bioinformatics for genome analysis, DNA Barcoding, and RNA-Sequencing.

	Educational tool

	
	Ties together key bioinformatics tools and databases to

	
	assemble gene models

	investigate genomes

	work with phylogenetic trees

	analyze DNA barcodes

	Analyze your own data or the sample data provided

	DNA Subway guide [https://cyverse-dnasubway-guide.readthedocs-hosted.com/en/latest/]

Data Commons [http://datacommons.cyverse.org/]

[image: DClogo]

The Data Commons provides services to manage, organize, preserve, publish, discover, and reuse data.

	Access discoverable and reusable data with metadata features and functions

	Browse Community Released Data and data curated by CyVerse

	Easily publish data to the NCBI or directly to the CyVerse Data Commons

Science APIs

[image: sciAPIslogo]

Programmatic access to CyVerse services

	Science-as-a-service platform

	Define your own compute, and storage resources (local and CyVerse)

	Build your own app store of scientific codes and workflows

	Agave API for HPC

	Terrain API for DE

SciApps [https://www.sciapps.org/]

A cloud-based platform for building and sharing reproducible bioinformatics workflows across distributed computing and storage systems

	Build branching analysis workflows

	SciApps guide [https://cyverse-sciapps-guide.readthedocs-hosted.com/en/latest/index.html]

Powered by CyVerse [http://www.cyverse.org/powered-by-cyverse]

[image: PBlogo]

Third-party projects can leverage the CyVerse cyberinfrastructure components to provide services to their users.

	Some ‘Powered by CyVerse’ projects you may be familiar with

	
	CoGe

	BioExtract Server

	CIPRES

	ClearedLeavesDB

	Digital Imaging of Root Traits (DIRT)

	Federated Plant Database Initiative for Legumes (LegFed)

	Galaxy

	Genomes to Fields

	iMicrobe

	Integrated Breeding Platform

	SoyKB

	TERRA-REF

	TNRS- Taxonomic Name Resolution Service

The CyVerse Learning Center [https://learning.cyverse.org/en/latest/#]

[image: LClogo]

The CyVerse Learning center is a beta release of our learning materials in the popular “Read the Docs” formatting.

	We are transitioning our learning materials into this format to make them easier to search, use, and update.

The CyVerse Wiki [https://wiki.cyverse.org]

This collaborative documentation site is used to record important information about CyVerse, its products and services, and community collaborators and their projects.

	Anyone with a CyVerse account is welcome to help out.

	User have their own spaces and can add content

	
	Much of the CyVerse documentation has been moved the Learning center but some things will continue to be in the Wiki

	
	DE app documentation

	Many tutorials

Intercom

[image: intercomlogo]

Intercom is our live-chat user support app. You will find the Intercom ‘smiley’ logo in the bottom right corner of the Discovery Environment, Atmosphere, the Wiki and the user portal.

Funding and Citations

CyVerse is funded entirely by the National Science Foundation under
Award Numbers DBI-0735191, DBI-1265383 and DBI-1743442.

Please cite CyVerse appropriately when you make use of our resources,
CyVerse citation
policy [http://www.cyverse.org/acknowledge-and-cite-cyverse]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Accessing Data Store

[image: DS_icon]

The Data Store is more than a place to save your files – it is a way to manage the life cycle of your data. From creation to publication to beyond, there are a number of practices to ensure that the integrity and value of your data are maintained.

In this lesson we will practice other ways of accessing the Data Store, plus how to make your data publicly available.

Discovery Environment Interface

DE interface allows uploading and downloading one file at a time. It works best for transfer of small files < 2GB.

From the DE interface, go to “Upload -> Simple Upload from Desktop” to upload a file. For downloading a file go to “Download -> Simple Download”.

Sample data for practice
/iplant/home/shared/iplantcollaborative/example_data/FOSS_2020/foss_sampledata

iCommands

iCommands is a collection of tools developed by the iRODS project [https://irods.org/], which is the technology that supports the CyVerse Data Store. Using iCommands is the most flexible way to interact with the Data Store.

iCommands provides command line access to the Data Store, so it can be included in scripts to automate data upload and download. Unfortunately, the latest iCommands cannot be installed on most Windows operating systems, but participants with Windows computers can do this exercise using Atmosphere (which will be covered in tomorrow’s lessons). If you are running Window 10, you can run iCommands on the Linux subsystem [https://wiki.cyverse.org/wiki/display/DS/Setting+Up+iCommands#SettingUpiCommands-other].

Follow along with the Using iCommands [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step2.html] quick start to:

	Install and configure iCommands

	Upload a file to your home folder (iput)

	Download a file to your desktop (iget)

In addition, we will use iCommands to:

	Create a new folder in your home directory (imkdir)

$ imkdir newdir

	Move a file from your home directory to the new folder (imv)

$ imv file_name newdir/file_name

	Navigate to a public folder (icd)

$ icd /iplant/home/shared/imicrobe/camera

	List files in a directory

$ ils

	Copy a public file to the newly created folder (icp)

$ icp camera_projects/CAM_PROJ_AcidMine.csv /iplant/home/$username/newdir/CAM_PROJ_AcidMine.csv
$ icd /iplant/home/$username/
$ils newdir
$ils -A newdir

Here is the full documentation of iCommands [https://docs.irods.org/master/icommands/user/].

CyberDuck

Cyberduck is a free 3rd party software tool that allows you to drag-and-drop files between your local computer (or a remote server) and the Data Store. Cyberduck can also be used to rename files, and browse other shared or public Data Store locations.

Follow along with the CyberDuck [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step1.html] quick start to:

	Install and configure CyberDuck

	Upload a file to your CyVerse home directory

	Navigate to a public folder

WebDAV

WebDAV is an extension to the HTTP protocol that allows users to remotely edit and manage files. CyVerse has added support for WebDAV to the Data Store. This means users can access their home and public folders in the CyVerse Data Store from their local computers using web browsers and other WebDAV enabled applications such as common operating system file managers. With WebDAV, users can copy files between local computer and the Data Store as easily as if they were copying them between two folders on their computer.

Follow along with the WebDAV [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step5.html] quick start to access CyVerse data via WebDAV services.

Which method to choose?

	Criteria

	Cyberduck

	iCommands

	DE Interface

	DE WebDAV

	Ease of use

	2

	4

	1

	3

	Setup required?

	Yes

	Yes

	No

	No

	Works best for?

	Multiple small files

	Large files

	Small files < 2GB

	Small files < 2GB

	GUI support?

	Yes

	No

	Yes

	Yes

	Command-line support

	Yes

	Yes

	No

	Yes

	Allows to open/edit files?

	No

	No

	Yes

	Yes

CyVerse Data Commons

The Data Commons provides services throughout CyVerse to manage, organize, preserve, publish, discover, and reuse data.

Data Publication

Through the Data Commons, you can submit data directly to NCBI’s SRA [https://learning.cyverse.org/projects/sra_submission_quickstart/en/latest/index.html] or WGS [https://wiki.cyverse.org/wiki/pages/viewpage.action?pageId=34834057], or request a Digital Object Identifier (DOI) [https://cyverse-doi-request-quickstart.readthedocs-hosted.com/en/latest/] for your dataset.

For data that are not stable or permanent, you can request a Community Released Folder [https://wiki.cyverse.org/wiki/display/DC/Preparing+Community+Released+Data+Folders].

For an overview see Publishing data on the CyVerse Data Commons [https://wiki.cyverse.org/wiki/display/DC/Publishing+Data+through+the+Data+Commons].

Additional Resources

Data Store Manual [https://wiki.cyverse.org/wiki/display/DS/Data+Store+Table+of+Contents]

Create a public link via the DE [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step4.html]

DOI request quick start [https://learning.cyverse.org/projects/cyverse-doi-request-quickstart/en/latest/index.html]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Discovery Environment - Data Management

[image: DE_icon]

DE2 Data Store Walkthrough

	Log in at https://de2.cyverse.org/

learning objectives

	Recognize the data store environment and how to navigate it

	Use data store through GUI to interact with community datasets

	Describe how to create a directory in the data store

Data Window

[image: DE2_data_icon]

Community Data on DE2

[image: DE2_community_data]

Changing Locations on DE2

[image: DE2_change_location]

Sorting Folders in DE2

[image: DE2_sorting_options]

Navigate to the FOSS Folder

The folder is inside Community Data and called foss

[image: FOSS Folder Location]

Which contains:

[image: FOSS Folder Contents]

Creating Folders in the Data Store

Navigate to the spring-2021 folder, you should see the following:

[image: FOSS Spring 2021 Contents]

Inside the folder that matches the day that you attend FOSS,
create a folder that matches your CyVerse username.

[image: Create a Folder]

What can we do with this?

Question

In small groups discuss the following questions:

	How might you use the Data Store in your work?

	Does the data store allow your data to be FAIR?

	What is one way you could use the data store in FOSS for your group work?

Leave Feedback on the DE2 Layout and User Interface

Leave Feedback for the DE2

Classic DE Data Store Walkthrough

	Log in at https://de.cyverse.org/

[image: DE_blank]

Data Window

	Open the data window and upload a file:

[image: DE_data_upload]

	Create a new text file [https://wiki.cyverse.org/wiki/display/DEmanual/Creating+New+Files+and+Folders] and share it with someone in the class:

[image: DE_dots_menu]

	Download [https://wiki.cyverse.org/wiki/display/DEmanual/Downloading+Files+and+Folders] the shared file.

Using metadata in the Classic DE

	Using metadata in the DE [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE] :

[image: DE_metadata]

	Search [https://wiki.cyverse.org/wiki/display/DEmanual/Searching+for+Data+Items] for data in the DE:

[image: DE_search]

	Try a simple search for the word “maize”

	Try an advanced search for attribute = subject and value = maize

	
	Other options to be covered on Tuesday:

	
	bulk metadata application [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE#UsingMetadataintheDE-Addingbulkmetadatatomultiplefilesorfolders]

	metadata templates [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE#UsingMetadataintheDE-Usingmetadatatemplates]

Advanced Metadata Usage in Classic DE

The Data Commons provides advanced metadata features in the Discovery Environment, including:

	metadata templates [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE#UsingMetadataintheDE-Usingmetadatatemplates]

Exercise:
- Open the DE
- Apply a Plant Ontology template to a folder.
- Apply an ontology term to a file or folder.

	bulk metadata application [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE#UsingMetadataintheDE-Addingbulkmetadatatomultiplefilesorfolders]

Exercise:
1. Copy the B123 file to your home directory
- Using icommands:

$ icd /iplant/home/$username
$ icp -r /iplant/home/rwalls/B123 B123
$ ils

	In the DE:

	create a folder in your home directory called B123

	Move into B123

	Upload >> Import from URL…

	paste each of the URLs below into a slot. This must be done in two batches.

https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/012.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/123.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/234.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/345.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/456.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/567.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/678.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/789.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/Rice_metadata.csv

2. Apply metadata
- In the DE apply the DE apply metadata to the contents of B123

	Browse to B123

	View the metadata for one of the files using the Metadata menu or the three dots (it should be blank)

	View the contents of the file Rice_metadata.csv

	Browse back to your home directory

	Check the box next to B123

	Select Metadata > Apply Bulk Metadata

	Select the file B123/Rice_metadata.csv

	Browse back to B123

	View the metadata of the different files in the directory

3. Advanced search
- Click on the search magnifying glass
- Click +
- Change File Name to Metadata
- Under Attribute, type treatment, under Value type cold
- Hit Search

Additional Resources

	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]

	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]

	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Data Management Overview

learning-objectives

	Recognize data as the foundation of open science and be able to
describe the “life cycle of data”

	Use self-assessments to evaluate your current data management practices

	Cite tools and resources to improve your data management practices

	Know the biggest challenge to effective data management

Why should you care about data management?

Data is the raw currency of open science. Most work centers on creating data or
adding to its value. The goal of this section is to highlight how you can make
your data more valuable by managing it more effectively and with less effort.

How would you answer?

If you give your data to a colleague who has not been involved with your project, would they be able to make sense of it? Would they be able to use it properly?

If you come back to your own data in five years, will you be able to make sense of it? Will you be able to use it properly?

When you are ready to publish a paper, is it easy to find all the correct versions of all the data you used and present them in a comprehensible manner?

Data management skills produce self-describing datasets that:

	Make life much easier for you and your collaborators

	Benefit the scientific research community by allowing others to
reuse your data

	Are required by most funders and many journals

	Recent Dear Colleague letter from NSF

	NSF proposal preparation guidelines

Data Self-assessment

Part I: Basic questions

Here are some questions about how you manage and work with data. We will complete some more formal assessments later, but for now let’s see where you are.

Question

In small groups, discuss the following questions. You will be provided
with a space for documenting our shared answers.

	What are the two or three data types that you most frequently work with?

	What is the scale of your data?

Tip

We often talk about the scale of data using the "Three V's":

	Volume: Size of the data (MBs, GBs, TBs); can also
include how many files (e.g dozens of big files, or millions
of small ones)

	Velocity: How quickly are these data produced and analyzed?
A lot coming in a single batch infrequently, or, a constant
small amount of data that must be rapidly analyzed?

	Variety: How many different data types (raw files? databases?)

A forth V (Veracity) captures the need to make decisions about
data processing (i.e., separating low- and high-quality data)

	What is your strategy for storing and backing up your data?

	What is your strategy for verifying the integrity of your data?
(i.e. verifying that your data has not be altered)

	What is your strategy for searching your data?

	What is your strategy for sharing (and getting credit for) your
data?
(i.e. How will do you share with your community/clients? How
is that sharing documented? How do you evaluate the impact
of data shared?)

Data Management Basics

Let’s learn a little more about data so that we can evaluate your self-
assessment responses.

Tip

The Data Life Cycle

Data management is the set of practices that allow researchers to effectively and efficiently handle data throughout the data life cycle. Although typically shown as a circle (below) the actually life cycle of any data item may follow a different path, with branches and internal loops. Being aware of your data’s future helps you plan how to best manage them.

[image: lifecycle]

Image from Strasser et al..

Data Types

Different types of data require different management practices.
What are some data types and sources you might use in your work? (Adapted from
DMP Tool Data management general guidance)

Data Types

	Text: field or laboratory notes, survey responses

	Numeric: tables, counts, measurements

	Audiovisual: images, sound recordings, video

	Models, computer code

	Discipline-specific: FASTA in biology, FITS in astronomy, CIF in
chemistry

	Instrument-specific: equipment outputs

Data Sources

Observational

	Captured in real-time, typically outside the lab

	Usually irreplaceable and therefore the most important to safeguard

	Examples: Sensor readings, telemetry, survey results, images

Experimental

	Typically generated in the lab or under controlled conditions

	Often reproducible, but can be expensive or time-consuming

	Examples: gene sequences, chromatograms, magnetic field readings

Simulation

	Machine generated from test models

	Likely to be reproducible if the model and inputs are preserved

	Examples: climate models, economic models

Derived / Compiled

	Generated from existing datasets

	Reproducible, but can be very expensive and time-consuming

	Examples: text and data mining, compiled database, 3D models

Part II: Data-specific questions

Here are some questions about how you manage and work with data. We will complete some more formal assessments later, but for now let’s see where you are.

Question

In small groups, discuss the following questions. You will be provided
with a space for documenting our shared answers.

	Which of the following data types (above) do you frequently work with?

	Do you follow specific recommendations for managing the data you
work with? If not, do you know if guidelines exist?

Best practices for the data life cycle

The most important thing to remember about data management is that you are
not alone. There are data management experts within your discipline, many of
them not farther away than your university library system. In addition, there
are many organizations (including many cited below) which work to solve.

Warning

The biggest challenge to effective data management

The biggest challenge to data management making it an afterthought.

Unfortunately, poor data management doesn’t have a high upfront cost. You
can do substantial work before realizing you are in trouble. Like a swimmer
in rip current, by the time you realize you are in trouble, you may already
be close to drowning.

The solution? Make data management the first thing you consider when
starting a research project. It also needs to be a policy you institute
right away for your research group.

Here are some excellent steps to consider. The summary below is adapted from the excellent DataONE best practices primer.

Plan

	Describe the data that will be compiled, and how the data will
be managed and made accessible throughout its lifetime

	A good plan considers each of the stages below

Collect

	Have a plan for data organization in place before collecting
data

	Collect and store observation metadata at the same time you
collect the metadata

	Take advantage of machine generated metadata

Assure

	Record any conditions during collection that might affect the
quality of the data

	Distinguish estimated values from measured values

	Double check any data entered by hand

	Perform statistical and graphical summaries (e.g., max/min,
average, range) to check for questionable or impossible values.

	Mark data quality, outliers, missing values, etc.

Describe:

	Comprehensive data documentation (i.e. metadata) is the key to
future understanding of data. Without a thorough description of
the context of the data, the context in which they were
collected, the measurements that were made, and the quality of
the data, it is unlikely that the data can be easily discovered,
understood, or effectively used.

	Organize your data for publication. Before you can describe your
data, you must decide how to organize them. This should be
planned before hand, so that data organization is a minimal task
at the time of publication.

	Thoroughly describe the dataset (e.g., name of dataset, list of
files, date(s) created or modified, related datasets) including the people
and organizations involved in data collection (e.g.,
authors, affiliations, sponsor). Also include:

	An ORCID (obtain one if you don’t have one).

	The scientific context (reason for collecting the data, how
they were collected, equipment and software used to generate the data,
conditions during data collection, spatial and temporal resolution)

	The data themselves

	How each measurement was produced

	Units

	Format

	Quality assurance activities

	Precision, accuracy, and uncertainty

Metadata standards and ontologies are invaluable for supporting data reuse.
Metadata standards tell you:

	Which metadata attributes to include

	How to format your metadata

	What values are allowable for different attributes

Some metadata standards you may want to consider:

	DataCite for publishing data

	Dublin Core for sharing data on the web

	MIxS Minimum Information for any (x) sequence

	OGC standards for geospatial data

Ontologies provide standardization for metadata values:

	Example: Environment Ontology terms for the MIxS standards

	Example: Plant Ontology for plant tissue types or development stages

	FAIRSharing.org lists standards and ontologies for life sciences.

The CyVerse Data Commons supports good data description through:

	Metadata templates

	Bulk metadata upload

	Automatic collection of analysis parameters, inputs, and outputs
in the DE.

Preserve

In general, data must be preserved in an appropriate long-term archive (i.e.
data center). Here are some examples:

	Sequence data should go to a national repository, frequently NCBI

	Identify data with value – it may not be necessary to preserve
all data from a project

	The CyVerse Data Commons provides a place to publish and preserve data
that was generated on or can be used in CyVerse, where no other repository exists.

	See lists of repositories at FAIRSharing.org

	See lists of repositories at Data Dryad

	Github repos can get DOIs through Zenodo

	Be aware of licensing and other intellectual property issues

	Repositories will require some kind of license, often the least
restrictive (see for example Creative Commons

	Repositories are unlikely to enforce reuse restrictions, even if you apply
them.

Discover

	Good metadata allows you to discover your own data!

	Databases, repositories, and search indices provide ways to
discover relevant data for reuse

	Google dataset search

	DataOne

	FAIRSharing.org

Integrate

	Data integration is a lot of work

	Standards and ontologies are key to future data integration

	Know the data before you integrate them

	Don’t trust that two columns with the same header are the same data

	Properly cite the data you reuse!

	Use DOIs (Digital Object Identifiers) wherever possible

Analyze

	Follow open science principles for reproducible analyses
(CyVerse, RStudio, notebooks, IDEs)

	State your hypotheses and analysis workflow before collecting
data. Tools like Open Science Framework (OSF) allow you to make this
public.

	Record all software, parameters, inputs, etc.

References and Resources

DataOne best practices

Center for Open Science

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

FAIR Data

learning-objectives

	Recall the meaning of FAIR

	Understand why FAIR is a collection of principles (rather than rules)

	Use self-assessments to evaluate the FAIRness of your data

FAIR Principles

In 2016, the FAIR Guiding Principles for scientific data management and stewardship were published in Scientific Data. Read it.

Findable

	F1. (meta)data are assigned a globally unique and persistent identifier

	F2. data are described with rich metadata (defined by R1 below)

	F3. metadata clearly and explicitly include the identifier of the data it describes

	F4. (meta)data are registered or indexed in a searchable resource

Accessible

	A1. (meta)data are retrievable by their identifier using a standardized communications protocol

	A1.1 the protocol is open, free, and universally implementable

	A1.2 the protocol allows for an authentication and authorization procedure, where necessary

	A2. metadata are accessible, even when the data are no longer available

Interoperable

	I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

	I2. (meta)data use vocabularies that follow FAIR principles

	I3. (meta)data include qualified references to other (meta)data

Reusable

	R1. meta(data) are richly described with a plurality of accurate and relevant attributes

	R1.1. (meta)data are released with a clear and accessible data usage license

	R1.2. (meta)data are associated with detailed provenance

	R1.3. (meta)data meet domain-relevant community standard

Tip

Open vs. Public vs. FAIR:

FAIR does not demand that data be open: See one definition of open: http://opendefinition.org/

Tip

Why Principles?

FAIR is a collection of principles. Ultimately, different communities
within different scientific disciplines must work to interpret and
implement these principles. Because technologies change quickly, focusing
on the desired end result allows FAIR to be applied to a variety of
situations now and in the foreseeable future.

CARE Principles

The CARE principles for Indigenous Data Governance were drafted at the International Data Week and Research Data Alliance Plenary co-hosted event “Indigenous Data Sovereignty Principles for the Governance of Indigenous Data Workshop,” 8 November 2018, Gaborone, Botswana.

Collective Benefit

	C1. For inclusive development and innovation

	C2. For improved governance and citizen engagement

	C3. For equitable outcomes

Authority to Control

	A1. Recognizing rights and interests

	A2. Data for governance

	A3. Governance of data

Responsibility

	R1. For positive relationships

	R2. For expanding capability and capacity

	R3. For Indigenous languages and worldviews

Ethics

	E1. For minimizing harm and maximizing benefit

	E2. For justice

	E3. For future use

FAIR - TLC

Traceable, Licensed, and Connected

	The need for metrics: https://zenodo.org/record/203295#.XkrzTxNKjzI

How to get to FAIR?

This is a question that only you can answer, that is because it depends on (among other things)

	Your scientific discipline: Your datatypes and existing standards for
what constitutes acceptable data management will vary.

	The extent to which your scientific community has implemented FAIR: Some
disciplines have significant guidelines on FAIR, while others have not
addressed the subject in any concerted way.

	Your level of technical skills: Some approaches to implementing
FAIR may require technical skills you may not yet feel comfortable with.

While a lot is up to you, the first step is to evaluate how FAIR you think
your data are:

Exercise

Thinking about a dataset you work with, complete the ARDC FAIR assessment.

References and Resources

https://www.nature.com/articles/sdata201618

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Data Management Plans (DMP)

learning-objectives

	Describe the purpose of a data management plan

	Describe the important elements of a data management plan

	Use a self-assessment to design a data management plan

“A data management plan or DMP is a formal document that outlines how data are to be handled both during a research project, and after the project is completed.[1] The goal of a data management plan is to consider the many aspects of data management, metadata generation, data preservation, and analysis before the project begins; this may lead to data being well-managed in the present, and prepared for preservation in the future.”

(Source: https://en.wikipedia.org/wiki/Data_management_plan)

Example DMP

Why bother with a DMP?

How would you answer?

Do you have a data management plan? If so, how do you use it?

“Those who fail to plan, plan to fail”

Returning to the assertion that data (and its value) is at the foundation of
your science, working without a data management plan should be considered
scientific misconduct.

Those are strong words. And while we might have an intuition of the boundaries
of research ethics - data mismanagement seems more like an annoyance than
misconduct. However, if your mismanagement leads to error in your research
data, or the inability to make publicly-funded research open to the public,
these are serious consequences. Increasingly, funders realize this.

Stick:

	You have to make one [https://www.nsf.gov/pubs/2019/nsf19069/nsf19069.jsp]

	Reviewers definitely look at them, but they may not be enforced.

Carrot:

	Make your life easier

	Planning for you project makes it run more smoothly

	Avoid surprise costs

Elements of a good DMP

	Information about data & data format(s)

	data types

	data sources

	analysis methods

	formats

	QA/QC

	version control

	data life cycle

	Metadata content and format(s)

	format

	standards

	Policies for access, sharing, and re-use

	funder obligations

	ethical and privacy issues (data justice)

	intellectual property, copyright, citation

	timeline for releases

	Long-term storage, data management, and preservation

	which data to preserve

	which archive/repository

	Budget (PAPPG [https://www.nsf.gov/pubs/policydocs/pappg19_1/pappg_2.jsp#IIC2gvib])

	each of the above elements cost time/money

	Personnel time for data preparation, management, documentation, and preservation (including time)

	Hardware and/or software for data management, back up, security, documentation, and preservation (including time)

	Publication/archiving costs (including time)

Not only what, but who (roles).

Extra challenges for collaborative projects.

Machine actionable DMPs

	DMPs describe research methods that will evolve over the course of a project

	to be a useful tool for researchers and others, the content must be updated to capture the methods that are employed and the data that are produced

[image: maDMP]

(Source: https://doi.org/10.1371/journal.pcbi.1006750.g002)

Tools for DMPs

Exercise

Thinking about a dataset you work with, complete the Data Stewardship Wizzard.

References and Resources

	NSF Guidelines on DMPs [https://www.nsf.gov/bio/biodmp.jsp]

	https://dmptool.org/general_guidance

	https://dmptool.org/public_templates

	Professional and scholarly societies, e.g., theEcological Society of America http://www.esa.org/esa/science/data-sharing/resources-and-tools/

	DataOne - https://www.dataone.org/best-practices

	Data Carpentry - http://datacarpentry.org/

	The US Geological Survey http://www.usgs.gov/datamanagement/index.php

	Repository registry (and search) service: http://www.re3data.org/

	Your university library

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Data Management Tools

	KNB tools [https://knb.ecoinformatics.org/tools]

	Open Science Framework [https://osf.io/]

	CyVerse Data Commons [https://datacommons.cyverse.org/]

CyVerse Data Commons

	Using metadata in the DE

	Managing a shared project on CyVerse [https://cyverse-group-project-quickstart.readthedocs-hosted.com/en/latest/]

	Community Released Data Folders [https://wiki.cyverse.org/wiki/display/DC/Publishing+Data+through+the+Data+Commons]

	DOIs for datasets [https://cyverse-doi-request-quickstart.readthedocs-hosted.com/en/latest/]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Discovery Environment - Data Analysis

[image: DE_icon]

Why use the DE?

	Use hundreds of bioinformatics Apps without the command line

	Executable and interactive modes

	Seamlessly integrated with data and high performance computing – not dependent on your hardware

	Create and publish Apps and workflows so anyone can use them

	Analysis history and provenance – “avoid forensic bioinformatics”

	Securely and easily manage, share, and publish data

Apps Window [https://wiki.cyverse.org/wiki/display/DEmanual/Using+the+Apps+Window+and+Submitting+an+Analysis]

Customizing the Apps window view

[image: DE_switch_view]

Finding Apps

[image: DE_apps_operation]

When adding new apps to the DE, developers have the option of adding the app to a community. Users can join a community in the ‘communities’ menu under the person icon in the top right corner of the DE window. A new category will then be added to the left pane of the ‘Apps’ window called ‘My Communities’. This can be an easy way to find apps related to a specific project and to see when new apps have been added to that project.

[image: DE_communities]

Types of apps

	Executable: user starts an analysis and when the analysis finishes they can find the output files in their ‘Analyses’ folder

	DE: run locally on our cluster

	HPC: labeled as ‘Agave’ in the DE. Run on XSEDE resources at Texas Advanced Computing Center (TACC)

	OSG: run on the Open Science Grid

	Interactive: also called Visual and Interactive Computing Environment (VICE). Allows users to open Integrated Development Environments (IDEs) including RStudio, Project Jupyter and RShiny and work interactively within them.

Launch an executable analysis [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Apps]

[image: DE_word_count]

Analyses window [https://wiki.cyverse.org/wiki/display/DEmanual/Using+the+Analyses+Window]

The analysis window provides the status (submitted, running, failed, completed) of each of your analyses.

[image: DE_analyses]

A variety of information and tasks related to an analysis can be found in the ‘three dots’ menu at the right.

	Relaunch or cancel [https://wiki.cyverse.org/wiki/display/DEmanual/Relaunching%2C+Canceling%2C+and+Deleting+Analyses%2C+Viewing+Analysis+Outputs+and+Info] an analysis

	Troubleshoot an analysis [https://wiki.cyverse.org/wiki/display/DEmanual/Relaunching%2C+Canceling%2C+and+Deleting+Analyses%2C+Viewing+Analysis+Outputs+and+Info]

	Share an analysis [https://wiki.cyverse.org/wiki/display/DEmanual/Sharing+and+Unsharing+an+Analysis] with a collaborator.

Launch an interactive analysis (VICE) [https://learning.cyverse.org/projects/vice/en/latest/]

Visual Interactive Computing Environment VICE introduces graphic user interfaces (GUIs) and common Integrated Development Environments (IDEs) such as Project Jupyter Notebooks & Lab, RStudio, Shiny Apps and Linux Desktop

Additional resources

	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]

	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]

	VICE Manual [https://learning.cyverse.org/projects/vice/en/latest/]

	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/] Learning Center Home [http://learning.cyverse.org/]

Discovery Environment - Tools & Apps

	CyVerse tool: Software program that is integrated into the back end of the DE for use in DE apps

	

	CyVerse app: graphic interface of a tool made available for use in the DE

The (containerized) tool must be integrated into the Cyverse DE first. Then an app (interface) can be built for that tool.

Tool Integration into the DE

Building an App for Your Tool

You can build an app for any tool that:

	is private to you

	is shared with you

	is public

Note

It is a good idea to check to see if the tool you want is already integrated before you start. The tool my be there already and you can build an app using it.

In the ‘Manage Tools’ window search for ‘porechop’ in the search bar at the top of the window. Select the porechop public tool and choose ‘Use in App’ from the ‘Tools’ menu

[image: useinapp]

This will open the ‘Create App’ window. The tool to use will be pre-populated. Choose an informative app name and description (eg. tool name and version). Apps features can be added by dragging the feature from the left pane into the center pane.

[image: draglefttocenter]

You can edit the details of an app feature by selecting it in the center pane and editing in the right pane. Divide the app into sections appropriate for that tool (input, options and output are usually sufficient sections for simple apps).

[image: adddetailright]

For each option you add, you will need to specify what the option is, the flag (if there is one) and whether that option is required. If an option is not required be sure to check the ‘exclude if nothing is entered’ box. For tools that have positional agruments (no flags, eg. -z) you can modify the order of the commands by clicking the ‘command line order’ at the top of the window.

[image: commandlineorder]

As you add options to your app you will see in the bottom pane (command line view) what the command would look like on the command line.

[image: commandlineexp]

Although it is best to add all of the options for your tool, as it makes the app the most useful, you can expose as many or as few options as you like (as long as you add all the required options). Once you have finished adding options click save and close your app.

Now test your app with appropriate data. Your app can now be found in the ‘My apps in development’ category of the ‘Apps’ window (which displays by default).

[image: myappsdev]

Once you know your app works correctly you can share or publish it as you wish.
Public apps must have example data located in an appropriately named folder here:

/iplant/home/shared/iplantcollaborative/example_data

All public apps also have a brief documentation page on the CyVerse Wiki [https://wiki.cyverse.org/wiki/display/DEapps/List+of+Applications]

To publish your app click on ‘Share’ at the top of the ‘Apps’ window and select ‘Make public’. You will need to supply a:

	Topic (eg. genomics)

	Operation (eg. assembly)

	location of the example data

	brief description of inputs, required options and outputs

	link to CyVerse Wiki documentation page

	link to docmentation for the tool (provided by the developers)

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

Use this example to ensure that links open in new tabs, avoiding
forcing users to leave the document, and making it easy to update links
In a single place in this document

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Discovery Environment - VICE

CyVerse data science workbench, the Discovery Environment [https://de.cyverse.org/de/], includes a feature called VICE (Visual Interactive Computing Environment) [https://learning.cyverse.org/projects/vice/en/latest/]

VICE uses Docker containers to launch interactive programs, like RStudio, R Shiny Apps, Project Jupyter, Data Mining, and WebGL Applications that can be run in a browser. These programs allow users to interact with their data and do analyses in one place (i.e. view outputs in the same window code is executed). Researchers using VICE can explore their datasets interactively in the Discovery Environment while using the Data Store.

While VICE does require some coding knowledge, it is for anyone who wants to interact with data in an iteritative way.

Visual Interactive Computing Environment

	You can launch existing VICE images from the DE, or integrate your own using the Manage Tools.

	VICE apps are containers, and your data are in the container until you move them off of it. Your results will be saved when the app terminates in your /username/analyses directory, unless you specify that the app results be saved elsewhere.

Create a VICE app

1. Find the Docker image of your interactive tool/software of your interest

We will integrate RStudio as a VICE app in DE. There is a Docker image available for RStudio on Dockerhub.

Note

If there is no Docker image available for your tool of interest, then you would either find a Dockerfile which you can use to build the Docker image for your tool of interest or create one. You can get more help with either of that from here [https://learning.cyverse.org/projects/container_camp_workshop_2019/en/latest]

2. Test the Docker image locally on your computer (Optional but recommended)

This is optional but highly recommended step to confirm that the Docker image for your tool of interest is working as expected.

2.1 Pull the image from Dockerhub

$ docker pull cyversevice/rstudio-verse:3.6.0

You could also use Play with Docker [https://labs.play-with-docker.com/], which is a free resource to test and run the Docker container.

2.2 Sample run

$ sudo docker run --rm -v /$HOME:/app --workdir /app -p 8787:80 -e REDIRECT_URL=YOUR_IP_ADDRESS:8787 cyversevice/rstudio-verse:3.6.0

In your browser address bar, type YOUR_IP_ADDRESS:8787 to access RStudio

Note

The username and password for Rstudio is rstudio and rstudio1 respectively

Once you can open the Rstudio, then you are ready to integrate the tool in DE

3. Add tool in CyVerse Discovery Environment

3.1 Log-in to CyVerse Discovery Environment and click on the “Apps” window

3.2 Click “Manage Tools” -> “Tools” -> “Add Tool” and fill the details for your Docker image

Fill out the following details

Tool-Name: FOSS-Rstudio
Description: RStudio VICE app
Version: 3.6.0
Type: interactive
Image Name: cyversevice/rstudio-verse
Docker Hub URL: https://hub.docker.com/repository/docker/cyversevice/rstudio-verse
Tag: 3.6.0
Working Directory: /home/rstudio
Port Number: 80

[image: add-tool-vice-1]

3.3 Create a VICE app

Click on the “Apps” window. Click “Apps” -> “Create New”

[image: create-app-vice-1]

Note

For VICE apps, make sure to check “Do not pass this argument to command line”

Example data: /iplant/home/shared/iplantcollaborative/example_data/FOSS_2020/vice_exampledata

Version control using Git within RStudio

Step1: Make a new repo on GitHub

	Create a New repository on GitHub. Click the green “New” button to create a new repo. Enter the name of the repo and check initialize this repo with a README file. Click “Create Repository” button.

[image: create-repo]

Step2: Clone the new GitHub repo

	From Github, copy the repo URL via the green “Clone or Download” button.

	In RStudio, start a new project. File > New Project > Version Control > Git. Paste the GitHub URL in the “repository URL”.

	Enter the name of the “project directory” which should be same as the name of your GitHub repo.

	Click “Create Project”.

Step3: Push your changes to GitHub

	Make some changes (to README file or add a new code)

	Click on Git (Check Git tab on upper right corner of your RStudio window)

	Check the files that you want to commit. Click commit and enter a commit message on the next window.

	After you commit, it will promot you to set your account’s default identity. Go to terminal and configure your git user name and email using the following commands. You should be able to commit without any problems after you confgure.

	git config –global user.email “you@example.com”

	git config –global user.name “Your Name”

	To push the changes to the remote GitHub repository press the Push button on the upper right corner of the commit window. You will be prompted to enter the username and password of your GitHub account.

[image: git-rstudio]

Sharing VICE apps with collaborators

You can share your VICE workspace with colleagues (with a CyVerse account) who can see and edit your notebooks, logs, and outputs.

	To share your workspace

[image: vice-share-3]

	Opening workspaces shared with you

[image: vice-share-6]

[image: vice-share-7]

Specific instructions for launching VICE applications

-Jupyter lab [https://learning.cyverse.org/projects/vice/en/latest/user_guide/quick-jupyter.html]

-Rstudio [https://learning.cyverse.org/projects/vice/en/latest/user_guide/quick-rstudio.html]

-Rshiny [https://learning.cyverse.org/projects/vice/en/latest/user_guide/quick-rshiny.html]

List of Discovery Environment VICE apps [https://learning.cyverse.org/projects/vice/en/latest/vice_apps/examples.html]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Introduction to containers

What is a container?

A container is a standard unit of software that packages up code and all its dependencies so the application runs quickly and reliably from one computing environment to another. A container image includes everything needed to run an application: code, runtime, system tools, system libraries and settings.

Why use containers?

	Flexible: Even the most complex applications can be containerized.

	Lightweight: Containers leverage and share the host kernel, making them much more efficient in terms of system resources than virtual machines.

	Portable: You can build locally, deploy to the cloud, and run anywhere.

	Loosely coupled: Containers are highly self sufficient and encapsulated, allowing you to replace or upgrade one without disrupting others.

	Scalable: You can increase and automatically distribute container replicas across a datacenter.

	Secure: Containers apply aggressive constraints and isolations to processes without any configuration required on the part of the user.

We can move and scale our containerized applications; containers effectively guarantee that those applications will run the same way anywhere, allowing us to quickly and easily take advantage of all these environments.

Working with containers

	Image: self-contained, read-only ‘snapshot’ of your applications and packages, with all their dependencies

	Container: A virtualization of an operating system run within an isolated user space. A running instance of an image.

[image: docker]

Docker

Docker is a platform to build, share, and run applications with containers. Docker Engine is available on a variety of Linux platforms , Mac and Windows through Docker Desktop.

Docker images are built from Dockerfiles. A Dockerfile is a text document that contains all the commands you would normally execute manually in order to build a Docker image. Docker can build images automatically by reading the instructions from a Dockerfile.

More information on building Docker images

Once you have a Docker image you can:

	run it as a container (anywhere)

	push it to a registry (make it available to others)

	link it to GitHub with automated builds

Other things to note about Docker:

	Docker always runs as root. This makes it unsuitable for use on large computing systems with many users such as HPC.

	Docker images and containers are stored in the Docker directory (where Docker is installed) so you won’t see them in a list of your files. There are special Docker commands you can use to list/remove them.

[image: singularity]

Singularity

Singularity was created to run complex applications on HPC clusters in a simple, portable, and reproducible way. You are the same user inside a container as outside, and cannot gain additional privilege on the host system by default.

Singularity images are built from definition files [https://sylabs.io/guides/3.5/user-guide/cli/singularity_build.html]. Like Dockerfiles, they provide a list of commands necessary to build the image. They also have a very specific format although it is a different format from Dockerfiles.

Fortunately, Singularity will automatically convert and run Docker images (so you may not need to learn how to build a Singularity image at all).

Once built, the Singularity image will be saved as a .sif file in your local working directory. You can easily see your image when you list your files but you may have images files saved to lots of different directories.

[image: kubernetes]

Kubernetes

Kubernetes automates the distribution and scheduling of application containers across a cluster in a more efficient way. This allows you to scale-up your analyses as necessary.

A Kubernetes cluster consists of two types of resources:

	master node: responsible for deciding what runs on all of the cluster’s nodes. This can include scheduling workloads, like containerized applications, and managing the workloads’ lifecycle, scaling, and upgrades. The master also manages network and storage resources for those workloads.

	worker node: A cluster typically has one or more nodes, which are the worker machines that run your containerized applications and other workloads. Each node is managed from the master, which receives updates on each node’s self-reported status.

[image: cluster]

More worker nodes = more compute power. This means you can easily scale your app to run much faster/with larger datasets.

Once the application instances are created, a Kubernetes Deployment Controller continuously monitors those instances. If the Node hosting an instance goes down or is deleted, the Deployment controller replaces the instance with an instance on another Node in the cluster. This provides a self-healing mechanism to address machine failure or maintenance.

Finding pre-built images

Image registry: a storage and content delivery system, such as that used by Docker

Warning

Only use images from trusted sources or images for which you can see the Dockerfile. An image from an untrusted source could contain something other than what it’s labeled (eg. malware). If you can see the Dockerfile you can see exactly what is in the image.

Docker Hub

Docker Hub is a service provided by Docker for finding and sharing container images with your team. It provides the following major features:

	Repositories: Push and pull container images.

	Teams & Organizations: Manage access to private repositories of container images.

	Official Images: Pull and use high-quality container images provided by Docker.

	Publisher Images: Pull and use high- quality container images provided by external vendors. Certified images also include support and guarantee compatibility with Docker Enterprise.

	Builds: Automatically build container images from GitHub and Bitbucket and push them to Docker Hub.

	Webhooks: Trigger actions after a successful push to a repository to integrate Docker Hub with other services.

Docker Hub is the most well-known and popular image registry for Docker containers.

[image: biocontainerlogo]

BioContainers Registry

BioContainers is a community-driven project that provides the infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with special focus in proteomics, genomics, transcriptomics and metabolomics. BioContainers is based on the popular frameworks of Docker.

Although anyone can create a BioContainer, the majority of BioContainers are created by the Bioconda project. Every Bioconda package has a corresponding BioContainer available at Quay.io.

[image: biocondalogo]

	package manager: collection of software tools that automates the process of installing, upgrading, configuring, and removing computer programs for a computer’s operating system in a consistent manner

	Bioconda is a channel for the conda package manager specializing in bioinformatics software. It consists of:

	Over 800 contributors that add, modify, update and maintain the recipes

	A repository of > 7000 bioinformatics packages ready to use

	Each package added to Bioconda also has a corresponding Docker BioContainer automatically created and uploaded to Quay.io

	You can contribute [https://bioconda.github.io/contributing.html] to the Bioconda project by building your own packages. Each package will also be made available as a BioContainer at Quay

Note

The BioContainers registry search returns partial matches and matches to the tool description. So, if you want to find all the tools relevant to Nanopore analysis you can search for ‘nanopore’.

Note

You want the docker images, not the Conda packages. Conda packages are not containers.

Quay

Quay is another general image registry. It works the same way as Docker Hub. However, Quay is home to all BioContainers made by the Bioconda project. Now we will find a BioContainer image at Quay, pull that image and run it on cloud virtual machine.

Hands-on

To run your BioContainer you will need a computer with Docker installed.

Launch this Atmosphere instance: Ubuntu 18.04 GUI XFCE Base

How to install Docker

Installing Docker on your computer takes a little time but it is reasonably straight forward and it is a one-time setup. How to install Docker.

Docker installation is much easier on an Atmosphere instance with the ‘ezd’ command.

$ ezd

Get data to use with your container

Install iCommands

$ cd Desktop
$ iget /iplant/home/shared/iplantcollaborative/example_data/porechop/SRR6059710.fastq

Use ‘docker pull’ to get the image

Go to Quay and search for ‘porechop’ in the search bar at the top of the page.

Click on the ‘tag’ icon on the left side of the screen to show all the available ‘porechop’ images.

[image: biocontainers3]

Click the ‘fetch tag’ icon at the right and choose ‘Docker pull (by tag)’ from the dropdown. This will copy the docker pull command that we will need on the command line.

[image: biocontainers8]

Now you will need to pull the image from the registry onto your computer. Use the ‘docker pull’ command you copied from the registry above.

Note

If you are working on a system for which you don’t have root permissions you will need to use ‘sudo’ and provide your password. Like this:

$ sudo docker pull quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3

[image: pullquayio]

Use the ‘docker run’ command to run the container

The easiest way to test the container to run the help command for the tool. In this case ‘-h’ is the help command.

$ sudo docker run --rm -v $(pwd):/working-dir -w /working-dir --entrypoint="porechop" quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 -h

From the result we are able to see the only required option is ‘-i INPUT’. Options in [square brackets] are not required.

Now we can run the container with our data file to see the output.

$ sudo docker run --rm -v $(pwd):/working-dir -w /working-dir --entrypoint="porechop" quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 -i SRR6059710.fastq -o porechop_output.fastq

We can break the command down into pieces so it is easier to read (the backslash represents where we have broken the line).

sudo \
docker run \
--rm \
-v $(pwd):/working-dir \
-w /working-dir \
--entrypoint="porechop" \
quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 \
-i SRR6059710.fastq \
-o porechop_out.fastq

What it All Means

	‘sudo’ allows you to run the container with ‘root’ permissions–only required if you don’t have root permissions on your machine

	‘docker run’ tells docker to run the container

	‘–rm’ removes the container (not the image) from your system when the analysis is complete

	‘-v’ mounts a local directory into a directory within the container

	‘-w’ specifies the working directory within the container

	‘–entrypoint’ tells the container what to do (usually the name of the tool; the command you would use to run the tool on the command line)

	‘quay.io/biocontainers/porechop:0.2.3_seqan2.1.1–py36h2d50403_3’ is the name of the image we pulled from Quay.io

	‘-i’ is the argument for the input file (FASTQ) for Porechop

	‘-o’ is the arguemnt for the output file (trimmed FASTQ) for Porechop

Important

You must supply an entrypoint on the command line when you run a BioContainer. It is possible to build entrypoints into a container but that is not he case with BioContainers.

[image: porechoprun]
[image: porechoptrim]
[image: porechopdone]

The output from Porechop is saved into the working directory within the container. We ran the container we mounted our current local working directory into the working directory within the container. The analysis has finished, the container has been removed (remember –rm) and now we should find our outputs in our local current working directory.

List the files:

$ ls -l

[image: porechopout]

You can see the ‘porechop_out.fastq’ file is in our current working directory. Notice that the this file is owned by ‘root’. This is because Docker containers always run as ‘root’.

At this point you can run your container on any system with Docker installed. To use this container on an HPC system you will need to use Singularity (rather than Docker) to run your container. For more information about running Docker containers with Singularity see the Singularity documentation [https://singularity.lbl.gov/quickstart]

Useful Links

	BioContainers [https://biocontainers.pro/#/]

	Bioconda [https://bioconda.github.io/]

	Request a BioContainer [http://github.com/BioContainers/containers/issues]

	Singularity documentation [https://singularity.lbl.gov/quickstart]

	BioContainers contribution guidelines [https://github.com/BioContainers/specs#33-how-to-create-a-docker-based-biocontainer]

	Report BioContainers problems [http://github.com/BioContainers/containers/issues]

Some examples of public/private registries to consider for your research needs:

	Docker Cloud [https://cloud.docker.com/]

	Docker Hub [https://hub.docker.com/]

	Docker Trusted Registry [https://docs.docker.com/ee/dtr/]

	Amazon Elastic Container Registry [https://aws.amazon.com/ecr/]

	Google Container Registry [https://aws.amazon.com/ecr/]

	Azure Container Registry [https://azure.microsoft.com/en-us/services/container-registry/]

	NVIDIA GPU Cloud [https://ngc.nvidia.com/catalog/containers]

	Private Docker Registry [https://private-docker-registry.com/] - not official Docker

	Gitlab Container Registry [https://docs.gitlab.com/ce/administration/container_registry.html]

	Quay [https://quay.io/]

	TreeScale [https://treescale.com/]

	Canister [https://www.canister.io/]

	BioContainers Registry [https://biocontainers.pro/#/registry]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Launching a Docker app on Atmosphere

You don’t need to do the first 5 steps if you are running the ‘DataCarpentry Genomics May2019’ image.

	Use web shell to run a basic Atmosphere instance*

	Type ezd

	Wait for Docker to install

	Close or Refresh the Web Shell browser tab.

	type docker run hello-world

	type docker run godlovedc/lolcow

Note

You may receive an error if Docker did not add your username to the docker group, you’ll need to use the sudo invocation, e.g. sudo docker run hello-world

To add yourself to the docker group type sudo usermod -aG docker $USER and refresh your terminal window.

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

Introduction to Docker

[image: docker]

1. Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text editor. Prior experience in developing web applications will be helpful but is not required.

2. Docker Installation

Getting all the tooling setup on your computer can be a daunting task, but not with Docker. Getting Docker up and running on your favorite OS (Mac/Windows/Linux) is very easy.

The getting started guide on Docker has detailed instructions for setting up Docker on Mac [https://docs.docker.com/docker-for-mac/install/]/Windows [https://docs.docker.com/docker-for-windows/install/]/Linux [https://docs.docker.com/install/linux/docker-ce/ubuntu/].

Note

If you’re using Docker for Windows make sure you have shared your drive [https://docs.docker.com/docker-for-windows/#shared-drives].

If you’re using an older version of Windows or MacOS you may need to use Docker Machine [https://docs.docker.com/machine/overview/] instead.

All commands work in either Bash or Powershell on Windows.

Note

Depending on how you’ve installed Docker on your system, you might see a permission denied error after running the above command. If you’re on Linux, you may need to prefix your Docker commands with sudo. Alternatively to run docker command without sudo, you need to add your user (who has root privileges) to docker group.
For this run:

Create the docker group:

$ sudo groupadd docker

Add your user to the docker group:

$ sudo usermod -aG docker $USER

Log out and log back in so that your group membership is re-evaluated

2.1 Testing Docker installation

Once you are done installing Docker, test your Docker installation by running the following command to make sure you are using version 1.13 or higher:

$ docker --version
Docker version 18.09.3, build 774a1f4

When run without --version you should see a whole bunch of lines showing the different options available with docker. Alternatively you can test your installation by running the following:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
03f4658f8b78: Pull complete
a3ed95caeb02: Pull complete
Digest: sha256:8be990ef2aeb16dbcb9271ddfe2610fa6658d13f6dfb8bc72074cc1ca36966a7
Status: Downloaded newer image for hello-world:latest

Hello from Docker.
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.
.......

3. Running Docker containers from prebuilt images

Now that you have everything setup, it’s time to get our hands dirty. In this section, you are going to run a container from Alpine Linux [https://www.alpinelinux.org/] (a lightweight linux distribution) image on your system and get a taste of the docker run command.

But wait, what exactly is a container and image?

Containers - Running instances of Docker images — containers run the actual applications. A container includes an application and all of its dependencies. It shares the kernel with other containers, and runs as an isolated process in user space on the host OS.

Images - The file system and configuration of our application which are used to create containers. To find out more about a Docker image, run docker inspect hello-world. In the demo above, you could have used the docker pull command to download the hello-world image. However when you executed the command docker run hello-world, it also did a docker pull behind the scenes to download the hello-world image with latest tag (we will learn more about tags little later).

Now that we know what a container and image is, let’s run the following command in our terminal:

$ docker run alpine ls -l
total 52
drwxr-xr-x 2 root root 4096 Dec 26 2016 bin
drwxr-xr-x 5 root root 340 Jan 28 09:52 dev
drwxr-xr-x 14 root root 4096 Jan 28 09:52 etc
drwxr-xr-x 2 root root 4096 Dec 26 2016 home
drwxr-xr-x 5 root root 4096 Dec 26 2016 lib
drwxr-xr-x 5 root root 4096 Dec 26 2016 media
........

Similar to docker run hello-world command in the demo above, docker run alpine ls -l command fetches the alpine:latest image from the Docker registry first, saves it in our system and then runs a container from that saved image.

When you run docker run alpine, you provided a command ls -l, so Docker started the command specified and you saw the listing

You can use the docker images command to see a list of all images on your system

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
alpine latest c51f86c28340 4 weeks ago 1.109 MB
hello-world latest 690ed74de00f 5 months ago 960 B

Let’s try something more exciting.

$ docker run alpine echo "Hello world"
Hello world

OK, that’s some actual output. In this case, the Docker client dutifully ran the echo command in our alpine container and then exited it. If you’ve noticed, all of that happened pretty quickly. Imagine booting up a virtual machine, running a command and then killing it. Now you know why they say containers are fast!

Try another command.

$ docker run alpine sh

Wait, nothing happened! Is that a bug? Well, no. These interactive shells will exit after running any scripted commands such as sh, unless they are run in an interactive terminal - so for this example to not exit, you need to docker run -it alpine sh. You are now inside the container shell and you can try out a few commands like ls -l, uname -a and others.

Before doing that, now it’s time to see the docker ps command which shows you all containers that are currently running.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Since no containers are running, you see a blank line. Let’s try a more useful variant: docker ps -a

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
36171a5da744 alpine "/bin/sh" 5 minutes ago Exited (0) 2 minutes ago fervent_newton
a6a9d46d0b2f alpine "echo 'hello from alp" 6 minutes ago Exited (0) 6 minutes ago lonely_kilby
ff0a5c3750b9 alpine "ls -l" 8 minutes ago Exited (0) 8 minutes ago elated_ramanujan
c317d0a9e3d2 hello-world "/hello" 34 seconds ago Exited (0) 12 minutes ago stupefied_mcclintock

What you see above is a list of all containers that you ran. Notice that the STATUS column shows that these containers exited a few minutes ago.

If you want to run scripted commands such as sh, they should be run in an interactive terminal. In addition, interactive terminal allows you to run more than one command in a container. Let’s try that now:

$ docker run -it alpine sh
/ # ls
bin dev etc home lib media mnt proc root run sbin srv sys tmp usr var
/ # uname -a
Linux de4bbc3eeaec 4.9.49-moby #1 SMP Wed Sep 27 23:17:17 UTC 2017 x86_64 Linux

Running the run command with the -it flags attaches us to an interactive tty in the container. Now you can run as many commands in the container as you want. Take some time to run your favorite commands.

Exit out of the container by giving the exit command.

/ # exit

Note

If you type exit your container will exit and is no longer active. To check that, try the following:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
de4bbc3eeaec alpine "/bin/sh" 3 minutes ago Exited (0) About a minute ago pensive_leavitt

If you want to keep the container active, then you can use keys ctrl +p, ctrl +q. To make sure that it is not exited run the same docker ps -a command again:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
0db38ea51a48 alpine "sh" 3 minutes ago Up 3 minutes elastic_lewin

Now if you want to get back into that container, then you can type docker attach <container id>. This way you can save your container:

$ docker attach 0db38ea51a48

4. Build Docker images which contain your own code

Great! so you have now looked at docker run, played with a Docker containers and also got the hang of some terminology. Armed with all this knowledge, you are now ready to get to the real stuff — deploying your own applications with Docker.

4.1 Deploying a command-line app

Note

Code for this section is in this repo in the examples/ [https://github.com/CyVerse-learning-materials/container_camp_workshop_2019/tree/master/examples] directory

In this section, let’s dive deeper into what Docker images are. Later on we will build our own image and use that image to run an application locally.

4.1.1 Docker images

Docker images are the basis of containers. In the previous example, you pulled the alpine image from the registry and asked the Docker client to run a container based on that image. To see the list of images that are available locally on your system, run the docker images command.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu bionic 47b19964fb50 4 weeks ago 88.1MB
alpine latest caf27325b298 4 weeks ago 5.53MB
hello-world latest fce289e99eb9 2 months ago 1.84kB
.........

Above is a list of images that I’ve pulled from the registry and those I’ve created myself (we’ll shortly see how). You will have a different list of images on your machine. The TAG refers to a particular snapshot of the image and the ID is the corresponding unique identifier for that image.

For simplicity, you can think of an image akin to a git repository - images can be committed with changes and have multiple versions. When you do not provide a specific version number, the client defaults to latest.

For example you could pull a specific version of ubuntu image as follows:

$ docker pull ubuntu:16.04

If you do not specify the version number of the image, as mentioned, the Docker client will default to a version named latest.

So for example, the docker pull command given below will pull an image named ubuntu:latest

$ docker pull ubuntu

To get a new Docker image you can either get it from a registry (such as the Docker hub) or create your own. There are hundreds of thousands of images available on Docker hub. You can also search for images directly from the command line using docker search.

$ docker search ubuntu
 NAME DESCRIPTION STARS OFFICIAL AUTOMATED
 ubuntu Ubuntu is a Debian-based Linux operating sys… 7310 [OK]
 dorowu/ubuntu-desktop-lxde-vnc Ubuntu with openssh-server and NoVNC 163 [OK]
 rastasheep/ubuntu-sshd Dockerized SSH service, built on top of offi… 131 [OK]
 ansible/ubuntu14.04-ansible Ubuntu 14.04 LTS with ansible 90 [OK]
 ubuntu-upstart Upstart is an event-based replacement for th… 81 [OK]
 neurodebian NeuroDebian provides neuroscience research s… 43 [OK]
 ubuntu-debootstrap debootstrap --variant=minbase --components=m… 35 [OK]
 1and1internet/ubuntu-16-nginx-php-phpmyadmin-mysql-5 ubuntu-16-nginx-php-phpmyadmin-mysql-5 26 [OK]
 nuagebec/ubuntu Simple always updated Ubuntu docker images w… 22 [OK]
 tutum/ubuntu Simple Ubuntu docker images with SSH access 18
 ppc64le/ubuntu Ubuntu is a Debian-based Linux operating sys… 11
 i386/ubuntu Ubuntu is a Debian-based Linux operating sys… 9
 1and1internet/ubuntu-16-apache-php-7.0 ubuntu-16-apache-php-7.0 7 [OK]
 eclipse/ubuntu_jdk8 Ubuntu, JDK8, Maven 3, git, curl, nmap, mc, … 5 [OK]
 darksheer/ubuntu Base Ubuntu Image -- Updated hourly 3 [OK]
 codenvy/ubuntu_jdk8 Ubuntu, JDK8, Maven 3, git, curl, nmap, mc, … 3 [OK]
 1and1internet/ubuntu-16-nginx-php-5.6-wordpress-4 ubuntu-16-nginx-php-5.6-wordpress-4 2 [OK]
 1and1internet/ubuntu-16-nginx ubuntu-16-nginx 2 [OK]
 pivotaldata/ubuntu A quick freshening-up of the base Ubuntu doc… 1
 smartentry/ubuntu ubuntu with smartentry 0 [OK]
 pivotaldata/ubuntu-gpdb-dev Ubuntu images for GPDB development 0
 1and1internet/ubuntu-16-healthcheck ubuntu-16-healthcheck 0 [OK]
 thatsamguy/ubuntu-build-image Docker webapp build images based on Ubuntu 0
 ossobv/ubuntu Custom ubuntu image from scratch (based on o… 0
 1and1internet/ubuntu-16-sshd ubuntu-16-sshd 0 [OK]

An important distinction with regard to images is between base images and child images and official images and user images (Both of which can be base images or child images.).

Important

Base images are images that have no parent images, usually images with an OS like ubuntu, alpine or debian.

Child images are images that build on base images and add additional functionality.

Official images are Docker sanctioned images. Docker, Inc. sponsors a dedicated team that is responsible for reviewing and publishing all Official Repositories content. This team works in collaboration with upstream software maintainers, security experts, and the broader Docker community. These are not prefixed by an organization or user name. In the list of images above, the python, node, alpine and nginx images are official (base) images. To find out more about them, check out the Official Images Documentation.

User images are images created and shared by users like you. They build on base images and add additional functionality. Typically these are formatted as user/image-name. The user value in the image name is your Dockerhub user or organization name.

4.1.2 Meet our Python app

Now that you have a better understanding of images, it’s time to create an image that sandboxes a small Python application. We’ll do this by creating a small Python script which prints a welcome message, then dockerizing it by writing a Dockerfile, and finally we’ll build the image and run it.

	Create a Python script

	Build the image

	Run your image

	Create a Python script which prints a welcome message

Start by creating a directory called simple-script where we’ll create the following files:

	app.py

	Dockerfile

$ mkdir simple-script && cd simple-script

1.1 app.py

Create the app.py file with the following content. You can use any of favorite text editor to create this file.

print('hello world!')
print('this is my first attempt')

Note

If you want, you can run this app through your laptop’s native Python installation first just to see what it looks like. Run python app.py.

You should see the message:

hello world!
this is my first attempt

This is totally optional - but some people like to see what the app’s supposed to do before they try to Dockerize it.

1.2. Dockerfile

A Dockerfile is a text file that contains a list of commands that the Docker daemon calls while creating an image. The Dockerfile contains all the information that Docker needs to know to run the app — a base Docker image to run from, location of your project code, any dependencies it has, and what commands to run at start-up. It is a simple way to automate the image creation process. The best part is that the commands you write in a Dockerfile are almost identical to their equivalent Linux commands. This means you don’t really have to learn new syntax to create your own Dockerfiles.

We want to create a Docker image with this app. As mentioned above, all user images are based on a base image. Since our application is written in Python, we will build our own Python image based on Alpine. We’ll do that using a Dockerfile.

Create a file called Dockerfile in the simple-script directory, and add content to it as described below.

our base image# our base image
FROM alpine:3.9

install python and pip
RUN apk add --update py3-pip

copy files required for the app to run
COPY app.py /usr/src/app/

run the application
CMD python3 /usr/src/app/app.py

Now let’s see what each of those lines mean..

1.2.1 We’ll start by specifying our base image, using the FROM keyword:

FROM alpine:3.9

1.2.2. The next step usually is to write the commands of copying the files and installing the dependencies. But first we will install the Python pip package to the alpine linux distribution. This will not just install the pip package but any other dependencies too, which includes the python interpreter. Add the following RUN command next:

RUN apk add --update py3-pip

1.2.3. Copy the file you have created earlier into our image by using COPY command.

COPY app.py /usr/src/app/

1.2.4. The last step is the command for running the application. Use the CMD command to do that:

CMD python3 /usr/src/app/app.py

The primary purpose of CMD is to tell the container which command it should run by default when it is started.

	Build the image

Now that you have your Dockerfile, you can build your image. The docker build command does the heavy-lifting of creating a docker image from a Dockerfile.

The docker build command is quite simple - it takes an optional tag name with the -t flag, and the location of the directory containing the Dockerfile - the . indicates the current directory:

Note

When you run the docker build command given below, make sure to replace <YOUR_DOCKERHUB_USERNAME> with your username. This username should be the same one you created when registering on Docker hub. If you haven’t done that yet, please go ahead and create an account in Dockerhub [https://hub.docker.com].

YOUR_DOCKERHUB_USERNAME=<YOUR_DOCKERHUB_USERNAME>

For example this is how I assign my dockerhub username

YOUR_DOCKERHUB_USERNAME=jpistorius

Now build the image using the following command:

$ docker build -t $YOUR_DOCKERHUB_USERNAME/simple-script .
Sending build context to Docker daemon 10.24kB
Step 1/4 : FROM alpine:3.9
 ---> caf27325b298
Step 2/4 : RUN apk add --update py3-pip
 ---> Using cache
 ---> dad2a197fcad
Step 3/4 : COPY app.py /usr/src/app/
 ---> Using cache
 ---> a8ebf6cd2735
Step 4/4 : CMD python3 /usr/src/app/app.py
 ---> Using cache
 ---> a1fb2906a937
Successfully built a1fb2906a937
Successfully tagged jpistorius/simple-script:latest

If you don’t have the alpine:3.9 image, the client will first pull the image and then create your image. Therefore, your output on running the command will look different from mine. If everything went well, your image should be ready! Run docker images and see if your image $YOUR_DOCKERHUB_USERNAME/simple-script shows.

	Run your image

When Docker can successfully build your Dockerfile, test it by starting a new container from your new image using the docker run command.

$ docker run $YOUR_DOCKERHUB_USERNAME/simple-script

You should see something like this:

hello world!
this is my first attempt

4.2 Deploying a Jupyter Notebook

In this section, let’s build a Docker image which can run a Jupyter Notebook

4.2.1 Suitable Docker images for a base

Search for images on Docker Hub which contain the string ‘jupyter’

$ docker search jupyter
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
jupyter/datascience-notebook Jupyter Notebook Data Science Stack from htt… 446
jupyter/all-spark-notebook Jupyter Notebook Python, Scala, R, Spark, Me… 223
jupyterhub/jupyterhub JupyterHub: multi-user Jupyter notebook serv… 195 [OK]
jupyter/scipy-notebook Jupyter Notebook Scientific Python Stack fro… 155
jupyter/tensorflow-notebook Jupyter Notebook Scientific Python Stack w/ … 116
jupyter/pyspark-notebook Jupyter Notebook Python, Spark, Mesos Stack … 95
jupyter/minimal-notebook Minimal Jupyter Notebook Stack from https://… 73
ermaker/keras-jupyter Jupyter with Keras (with Theano backend and … 66 [OK]
jupyter/base-notebook Small base image for Jupyter Notebook stacks… 60
xblaster/tensorflow-jupyter Dockerized Jupyter with tensorflow 52 [OK]
jupyter/r-notebook Jupyter Notebook R Stack from https://github… 22
jupyterhub/singleuser single-user docker images for use with Jupyt… 21 [OK]
...

4.2.2 Meet our model

Let’s deploy a Python function inside a Docker image along with Jupyter.

	Create a Python file containing a function

	`Build the image`_

	`Run your image`_

	Create a Python file containing a function

Start by creating a directory called myfirstapp where we’ll create the following files:

	model.py

	Dockerfile

$ mkdir myfirstapp && cd myfirstapp

1.1 model.py

Create the model.py file with the following content. You can use any of favorite text editor to create this file.

def introduce(name):
 return 'Hello ' + name

1.2. Dockerfile

Since we want to use a Jupyter notebook to call our function, we will build an image based on jupyter/minimal-notebook.

Note

This is one of the official Docker images provided by the Jupyter project for you to build your own data science notebooks on:

https://jupyter-docker-stacks.readthedocs.io/en/latest/

Create a file called Dockerfile in the myfirstapp directory, and add content to it as described below.

our base image
FROM jupyter/minimal-notebook

copy files required for the model to work
COPY model.py /home/jovyan/work/

tell the port number the container should expose
EXPOSE 8888

Now let’s see what each of those lines mean..

1.2.1 We’ll start by specifying our base image, using the FROM keyword:

FROM jupyter/minimal-notebook

1.2.2. Copy the file you have created earlier into our image by using COPY command.

COPY model.py /home/jovyan/work/

1.2.3. Specify the port number which needs to be exposed. Since Jupyter runs on 8888 that’s what we’ll expose.

EXPOSE 8888

1.2.4. What about CMD?

Notice that unlike our previous Dockerfile this one does not end with a CMD command. This is on purpose.

Remember: The primary purpose of CMD is to tell the container which command it should run by default when it is started.

Can you guess what will happen if we don’t specify our own ‘entrypoint’ using CMD?

	Build the image

Note

Remember to replace <YOUR_DOCKERHUB_USERNAME> with your username. This username should be the same one you created when registering on Docker hub.

YOUR_DOCKERHUB_USERNAME=<YOUR_DOCKERHUB_USERNAME>

For example this is how I assign my dockerhub username

YOUR_DOCKERHUB_USERNAME=jpistorius

Now build the image using the following command:

$ docker build -t $YOUR_DOCKERHUB_USERNAME/myfirstapp .
Sending build context to Docker daemon 3.072kB
Step 1/3 : FROM jupyter/minimal-notebook
 ---> 36c8dd0e1d8f
Step 2/3 : COPY model.py /home/jovyan/work/
 ---> b61aefd7a735
Step 3/3 : EXPOSE 8888
 ---> Running in 519dcabe4eb3
Removing intermediate container 519dcabe4eb3
 ---> 7983fe164dc6
Successfully built 7983fe164dc6
Successfully tagged jpistorius/myfirstapp:latest

If everything went well, your image should be ready! Run docker images and see if your image $YOUR_DOCKERHUB_USERNAME/myfirstapp shows.

	Run your image

When Docker can successfully build your Dockerfile, test it by starting a new container from your new image using the docker run command. Don’t forget to include the port forwarding options you learned about before.

$ docker run -p 8888:8888 $YOUR_DOCKERHUB_USERNAME/myfirstapp

You should see something like this:

Executing the command: jupyter notebook
[I 07:21:25.396 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
[I 07:21:25.609 NotebookApp] JupyterLab extension loaded from /opt/conda/lib/python3.7/site-packages/jupyterlab
[I 07:21:25.609 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
[I 07:21:25.611 NotebookApp] Serving notebooks from local directory: /home/jovyan
[I 07:21:25.611 NotebookApp] The Jupyter Notebook is running at:
[I 07:21:25.611 NotebookApp] http://(29a022bb5807 or 127.0.0.1):8888/?token=copy-your-own-token-not-this-one
[I 07:21:25.611 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 07:21:25.612 NotebookApp]

 Copy/paste this URL into your browser when you connect for the first time,
 to login with a token:
 http://(29a022bb5807 or 127.0.0.1):8888/?token=copy-your-own-token-not-this-one

Head over to http://localhost:8888 and your Jupyter notebook server should be running.

Note: Copy the token from your own docker run output and paste it into the ‘Password or token’ input box.

5. Dockerfile commands summary

Here’s a quick summary of the few basic commands we used in our Dockerfiles.

	FROM starts the Dockerfile. It is a requirement that the Dockerfile must start with the FROM command. Images are created in layers, which means you can use another image as the base image for your own. The FROM command defines your base layer. As arguments, it takes the name of the image. Optionally, you can add the Dockerhub username of the maintainer and image version, in the format username/imagename:version.

	RUN is used to build up the Image you’re creating. For each RUN command, Docker will run the command then create a new layer of the image. This way you can roll back your image to previous states easily. The syntax for a RUN instruction is to place the full text of the shell command after the RUN (e.g., RUN mkdir /user/local/foo). This will automatically run in a /bin/sh shell. You can define a different shell like this: RUN /bin/bash -c ‘mkdir /user/local/foo’

	COPY copies local files into the container.

	CMD defines the commands that will run on the Image at start-up. Unlike a RUN, this does not create a new layer for the Image, but simply runs the command. There can only be one CMD per a Dockerfile/Image. If you need to run multiple commands, the best way to do that is to have the CMD run a script. CMD requires that you tell it where to run the command, unlike RUN. So example CMD commands would be:

CMD ["python", "./app.py"]

CMD ["/bin/bash", "echo", "Hello World"]

	EXPOSE creates a hint for users of an image which ports provide services. It is included in the information which can be retrieved via $ docker inspect <container-id>.

Note

The EXPOSE command does not actually make any ports accessible to the host! Instead, this requires publishing ports by means of the -p flag when using docker run.

	PUSH pushes your image to Docker Cloud, or alternately to a private registry

Note

If you want to learn more about Dockerfiles, check out Best practices for writing Dockerfiles [https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/].

6. Demos

6.1 Portainer

Portainer [https://portainer.io/] is an open-source lightweight managment UI which allows you to easily manage your Docker hosts or Swarm cluster.

	Simple to use: It has never been so easy to manage Docker. Portainer provides a detailed overview of Docker and allows you to manage containers, images, networks and volumes. It is also really easy to deploy, you are just one Docker command away from running Portainer anywhere.

	Made for Docker: Portainer is meant to be plugged on top of the Docker API. It has support for the latest versions of Docker, Docker Swarm and Swarm mode.

6.1.1 Installation

Use the following Docker commands to deploy Portainer. Now the second line of command should be familiar to you by now. We will talk about first line of command in the Advanced Docker session.

$ docker volume create portainer_data

$ docker run -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer

	If you are on mac, you’ll just need to access the port 9000 (http://localhost:9000) of the Docker engine where portainer is running using username admin and password tryportainer

	If you are running Docker on Atmosphere/Jetstream or on any other cloud, you can open ipaddress:9000. For my case this is http://128.196.142.26:9000

Note

The -v /var/run/docker.sock:/var/run/docker.sock option can be used in mac/linux environments only.

[image: portainer_demo]

6.2 Play-with-docker (PWD)

PWD [https://labs.play-with-docker.com/] is a Docker playground which allows users to run Docker commands in a matter of seconds. It gives the experience of having a free Alpine Linux Virtual Machine in browser, where you can build and run Docker containers and even create clusters in Docker Swarm Mode [https://docs.docker.com/engine/swarm/]. Under the hood, Docker-in-Docker (DinD) is used to give the effect of multiple VMs/PCs. In addition to the playground, PWD also includes a training site composed of a large set of Docker labs and quizzes from beginner to advanced level available at training.play-with-docker.com [https://training.play-with-docker.com/].

6.2.1 Installation

You don’t have to install anything to use PWD. Just open https://labs.play-with-docker.com/ <https://labs.play-with-docker.com/>`_ and start using PWD

Note

You can use your Dockerhub credentials to log-in to PWD

[image: pwd]

Advanced Docker

Now that we are relatively comfortable with Docker, lets look at some advanced Docker topics, such as:

	Registry

	Porting a Docker image to a Registry & Repository (public and private)

	Managing data within containers

	Deploying containers on cloud services

1. Docker Registries

To demonstrate the portability of what we just created, let’s upload our built Docker image to a Docker Registry and then run it somewhere else (i.e. CyVerse Atmosphere [https://atmo.cyverse.org]).

In this exercise, you’ll learn how to push built containers to registries, pull those containers from registries, and run those containers on remote hosts (virtual machines).

This will benefit you when you want to deploy new containers to production environments where testing is not possible.

Important

So what EXACTLY is a Registry?

A registry is a collection of Repositories, and a Repository is a collection of Images. A Docker Registry is sort of like a GitHub Repository, except the code is already compiled, in this case, into a container. You must have an account on a registry. You can create many repositories. The Docker CLI uses Docker’s public registry by default. You can even set up your own private registry using Docker Trusted Registry

There are several things you can do with Docker registries:

	Push images

	Find images

	Pull images

	Share images

1.1 Popular Registries

Some examples of public/private registries to consider for your research needs:

	Docker Cloud [https://cloud.docker.com/]

	Docker Hub [https://hub.docker.com/]

	Docker Trusted Registry [https://docs.docker.com/ee/dtr/]

	Amazon Elastic Container Registry [https://aws.amazon.com/ecr/]

	Google Container Registry [https://aws.amazon.com/ecr/]

	Azure Container Registry [https://azure.microsoft.com/en-us/services/container-registry/]

	NVIDIA GPU Cloud [https://ngc.nvidia.com/catalog/containers]

	Private Docker Registry [https://private-docker-registry.com/] - not official Docker

	Gitlab Container Registry [https://docs.gitlab.com/ce/administration/container_registry.html]

	CoreOS Quay [https://quay.io/]

	TreeScale [https://treescale.com/]

	Canister [https://www.canister.io/]

1.1.1 Log into a Registry with your Docker ID

Now that you’ve created and tested your image, you can push it to Docker cloud or Docker hub.

Note

If you don’t have an account, sign up for one at Docker Cloud [https://cloud.docker.com/] or Docker Hub [https://hub.docker.com/]. Make note of your username. There are several advantages of registering to DockerHub which we will see later on in the session

First, you have to login to your Docker Hub account.

If you want to authenticate to a different Registry, type the name of the registry after login:

$ docker login <registry-name>
Authenticating with existing credentials...
WARNING! Your password will be stored unencrypted in /home/tswetnam/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

If it is your first time logging in you will be queried for your username and password.

Login with your Docker ID to push and pull images from Docker Hub or private registry.

If you don’t have a Docker ID, head over to https://hub.docker.com to create one.

1.1.2 Tagging images

The notation for associating a local image with a repository on a registry is username/repository:tag. The tag is optional, but recommended, since it is the mechanism that registries use to give Docker images a version. Give the repository and tag meaningful names for the context, such as get-started:part2. This will put the image in the get-started repository and tag it as part2.

Note

By default the docker image gets a latest tag if you don’t provide one. Thought convenient, it is not recommended for reproducibility purposes.

Now, put it all together to tag the image. Run docker tag image with your username, repository, and tag names so that the image will upload to your desired destination. For our docker image since we already have our Dockerhub username we will just add tag which in this case is 1.0

$ docker tag username/appname:latest username/appname:1.0

1.1.3 Publish the image

Upload your tagged image to the Dockerhub repository

$ docker push username/appname:1.0

Once complete, the results of this upload are publicly available. If you log in to Docker Hub, you will see the new image there, with its pull command.

[image: docker_image]

Congrats! You just made your first Docker image and shared it with the world!

1.1.4 Pull and run the image from the remote repository

Let’s try to run the image from the remote repository on Cloud server by logging into CyVerse Atmosphere, launching an instance

First install Docker on Atmosphere using from here https://docs.docker.com/install/linux/docker-ce/ubuntu or alternatively you can use ezd command which is a short-cut command for installing Docker on Atmosphere

$ ezd

Now run the following command to run the docker image from Dockerhub

$ sudo docker run -d -p 8888:8888 --name jupyter username/jupyter:1.0

Note

You don’t have to run docker pull since if the image isn’t available locally on the machine, Docker will pull it from the repository.

Head over to http://<vm-address>:8888 and your app should be live.

1.2 Private repositories

In an earlier part, we had looked at the Docker Hub, which is a public registry that is hosted by Docker. While the Dockerhub plays an important role in giving public visibility to your Docker images and for you to utilize quality Docker images put up by others, there is a clear need to setup your own private registry too for your team/organization. For example, CyVerse has it own private registry which will be used to push the Docker images.

1.2.1 Pull down the Registry Image

You might have guessed by now that the registry must be available as a Docker image from the Docker Hub and it should be as simple as pulling the image down and running that. You are correct!

A Dockerhub search on the keyword registry brings up the following image as the top result:

[image: private_registry]

Run a container from registry Dockerhub image

$ docker run -d -p 5000:5000 --name registry registry:2

Run docker ps -l to check the recent container from this Docker image

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6e44a0459373 registry:2 "/entrypoint.sh /e..." 11 seconds ago Up 10 seconds 0.0.0.0:5000->5000/tcp registry

1.2.2 Tag the image that you want to push

Next step is to tag your image under the registry namespace and push it there

$ REGISTRY=localhost:5000

$ docker tag $YOUR_DOCKERHUB_USERNAME/myfirstapp:1.0 $REGISTRY/$(whoami)/myfirstapp:1.0

1.2.2 Publish the image into the local registry

Finally push the image to the local registry

$ docker push $REGISTRY/$(whoami)/myfirstapp:1.0
The push refers to a repository [localhost:5000/upendra_35/myfirstapp]
64436820c85c: Pushed
831cff83ec9e: Pushed
c3497b2669a8: Pushed
1c5b16094682: Pushed
c52044a91867: Pushed
60ab55d3379d: Pushed
1.0: digest: sha256:5095dea8b2cf308c5866ef646a0e84d494a00ff0e9b2c8e8313a176424a230ce size: 1572

1.2.3 Pull and run the image from the local repository

You can also pull the image from the local repository similar to how you pull it from Dockerhub and run a container from it

$ docker run -d -P --name=myfirstapplocal $REGISTRY/$(whoami)/myfirstapp:1.0

2. Automated Docker image building from GitHub

An automated build is a Docker image build that is triggered by a code change in a GitHub or Bitbucket repository. By linking a remote code repository to a Dockerhub automated build repository, you can build a new Docker image every time a code change is pushed to your code repository.

A build context is a Dockerfile and any files at a specific location. For an automated build, the build context is a repository containing a Dockerfile.

Automated Builds have several advantages:

	Images built in this way are built exactly as specified.

	The Dockerfile is available to anyone with access to your Docker Hub repository.

	Your repository is kept up-to-date with code changes automatically.

	Automated Builds are supported for both public and private repositories on both GitHub and Bitbucket.

2.1 Prerequisites

To use automated builds, you first must have an account on Docker Hub [https://hub.docker.com] and on the hosted repository provider (GitHub [https://github.com/] or Bitbucket [https://bitbucket.org/]). While Docker Hub supports linking both GitHub and Bitbucket repositories, here we will use a GitHub repository. If you don’t already have one, make sure you have a GitHub account. A basic account is free

Note

	If you have previously linked your Github or Bitbucket account, you must have chosen the Public and Private connection type. To view your current connection settings, log in to Docker Hub and choose Profile > Settings > Linked Accounts & Services.

	Building Windows containers is not supported.

2.2 Link your Docker Hub account to GitHub

	Log into Docker Hub.

	Click “Create Repository+”

[image: dockerhub_create]

	Click the Build Settings and select GitHub.

[image: dockerhub_createrepo]

The system prompts you to choose between Public and Private and Limited Access. The Public and Private connection type is required if you want to use the Automated Builds.

	Press Select under Public and Private connection type.
If you are not logged into GitHub, the system prompts you to enter GitHub credentials before prompting you to grant access. After you grant access to your code repository, the system returns you to Docker Hub and the link is complete.

[image: dockerhub_buildsettings]

After you grant access to your code repository, the system returns you to Docker Hub and the link is complete. For example, github linked hosted repository looks like this:

[image: dockerhub_autobuild]

2.3 Automated Container Builds

Automated build repositories rely on the integration with a version control system (GitHub or Gitlab) where your Dockerfile is kept.

Let’s create an automatic build for our container using the instructions below:

	Initialize git repository for the jupyter directory you created for your Dockerfile

$ git init
Initialized empty Git repository in /home/username/github/repository_name/

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

 Dockerfileg

nothing added to commit but untracked files present (use "git add" to track)

$ git add * && git commit -m"Add files and folders"
[master (root-commit) cfdf021] Add files and folders
 4 files changed, 75 insertions(+)
 create mode 100644 Dockerfile

	Create a new repository on github by navigating to this url - https://github.com/new

[image: create_repo]

	Push the repository to github

[image: create_repo2]

$ git remote add origin https://github.com/username/jupyter.git

$ git push -u origin master
Counting objects: 7, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (7/7), 1.44 KiB | 0 bytes/s, done.
Total 7 (delta 0), reused 0 (delta 0)
To https://github.com/username/jupyter.git
 * [new branch] master -> master
Branch master set up to track remote branch master from origin.

	Select Create > Create Automated Build from Docker Hub.

	The system prompts you with a list of User/Organizations and code repositories.

	For now select your GitHub account from the User/Organizations list on the left. The list of repositories change.

	Pick the project to build. In this case jupyter. Type in “Container Camp Jupyter” in the Short Description box.

	If you have a long list of repos, use the filter box above the list to restrict the list. After you select the project, the system displays the Create Automated Build dialog.

[image: dockerhub_autobuilds]

Note

The dialog assumes some defaults which you can customize. By default, Docker builds images for each branch in your repository. It assumes the Dockerfile lives at the root of your source. When it builds an image, Docker tags it with the branch name.

	Customize the automated build by pressing the Click here to customize behavior link.

[image: auto_build-2.1]

Specify which code branches or tags to build from. You can build by a code branch or by an image tag. You can enter a specific value or use a regex to select multiple values. To see examples of regex, press the Show More link on the right of the page.

	Enter the master (default) for the name of the branch.

	Leave the Dockerfile location as is.

	Recall the file is in the root of your code repository.

	Specify 1.0 for the Tag Name.

	Click Create.

Important

During the build process, Docker copies the contents of your Dockerfile to Docker Hub. The Docker community (for public repositories) or approved team members/orgs (for private repositories) can then view the Dockerfile on your repository page.

The build process looks for a README.md in the same directory as your Dockerfile. If you have a README.md file in your repository, it is used in the repository as the full description. If you change the full description after a build, it’s overwritten the next time the Automated Build runs. To make changes, modify the README.md in your Git repository.

Warning

You can only trigger one build at a time and no more than one every five minutes. If you already have a build pending, or if you recently submitted a build request, Docker ignores new requests.

It can take a few minutes for your automated build job to be created. When the system is finished, it places you in the detail page for your Automated Build repository.

	Manually Trigger a Build

Before you trigger an automated build by pushing to your GitHub jupyter repo, you’ll trigger a manual build. Triggering a manual build ensures everything is working correctly.

From your automated build page choose Build Settings

[image: auto_build-5]

Press Trigger button and finally click Save Changes.

Note

Docker builds everything listed whenever a push is made to the code repository. If you specify a particular branch or tag, you can manually build that image by pressing the Trigger. If you use a regular expression syntax (regex) to define your build branch or tag, Docker does not give you the option to manually build.

[image: auto_build-6]

	Review the build results

The Build Details page shows a log of your build systems:

Navigate to the Build Details page.

Wait until your image build is done.

You may have to manually refresh the page and your build may take several minutes to complete.

[image: auto_build-7]

Exercise 1 (5-10 mins): Updating and automated building

	git add, commit and push to your GitHub or Gitlab repo

	Trigger automatic build with a new tag (2.0) on Docker Hub

	Pull your Docker image from Docker Hub to a new location.

	Run the instance to make sure it works

3. Managing Data in Docker

It is possible to store data within the writable layer of a container, but there are some limitations:

	The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of the container if another process needs it.

	A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t easily move the data somewhere else.

	Its better to put your data into the container AFTER it is build - this keeps the container size smaller and easier to move across networks.

Docker offers three different ways to mount data into a container from the Docker host:

	volumes,

	bind mounts,

	tmpfs volumes.

When in doubt, volumes are almost always the right choice.

3.1 Volumes

Volumes are created and managed by Docker. You can create a new volume explicitly using the docker volume create command, or Docker can create a volume in the container when the container is built.

When you run a container, you can bring a directory from the host system into the container, and give it a new name and location using the -v or --volume flag.

$ docker run -v /home/username/your_data_folder:/data username/jupyter:latest

In the example above, you can mount a folder from your localhost, in your home user directory into the container as a new directory named /data.

When you create a Docker volume, it is stored within a directory on the Docker Linux host (/var/lib/docker/

Note

File location on Mac OS X is a bit different. `see here<https://timonweb.com/posts/getting-path-and-accessing-persistent-volumes-in-docker-for-mac/>`_.

A given volume can be mounted into multiple containers simultaneously. When no running container is using a volume, the volume is still available to Docker and is not removed automatically. You can remove unused volumes using docker volume prune command.

[image: volumes]

Volumes are often a better choice than persisting data in a container’s writable layer, because using a volume does not increase the size of containers using it, and the volume’s contents exist outside the lifecycle of a given container. While bind mounts (which we will see later) are dependent on the directory structure of the host machine, volumes are completely managed by Docker. Volumes have several advantages over bind mounts:

	Volumes are easier to back up or migrate than bind mounts.

	You can manage volumes using Docker CLI commands or the Docker API.

	Volumes work on both Linux and Windows containers.

	Volumes can be more safely shared among multiple containers.

	A new volume’s contents can be pre-populated by a container.

Note

If your container generates non-persistent state data, consider using a tmpfs mount to avoid storing the data anywhere permanently, and to increase the container’s performance by avoiding writing into the container’s writable layer.

3.1.1 Choose the -v or –mount flag for mounting volumes

Originally, the -v or --volume flag was used for standalone containers and the --mount flag was used for swarm services. However, starting with Docker 17.06, you can also use --mount with standalone containers. In general, --mount is more explicit and verbose. The biggest difference is that the -v syntax combines all the options together in one field, while the --mount syntax separates them. Here is a comparison of the syntax for each flag.

Tip

New users should use the --mount syntax. Experienced users may be more familiar with the -v or --volume syntax, but are encouraged to use --mount, because research has shown it to be easier to use.

-v or --volume: Consists of three fields, separated by colon characters (:). The fields must be in the correct order, and the meaning of each field is not immediately obvious.

	In the case of named volumes, the first field is the name of the volume, and is unique on a given host machine.

	The second field is the path where the file or directory are mounted in the container.

	The third field is optional, and is a comma-separated list of options, such as ro.

3.2 Bind mounts

--mount: Consists of multiple key-value pairs, separated by commas and each consisting of a <key>=<value> tuple. The --mount syntax is more verbose than -v or --volume, but the order of the keys is not significant, and the value of the flag is easier to understand.
- The type of the mount, which can be bind, volume, or tmpfs.
- The source of the mount. For named volumes, this is the name of the volume. For anonymous volumes, this field is omitted. May be specified as source or src.
- The destination takes as its value the path where the file or directory is mounted in the container. May be specified as destination, dst, or target.
- The readonly option, if present, causes the bind mount to be mounted into the container as read-only.

Note

The --mount and -v examples have the same end result.

3.3 Create and manage volumes

Unlike a bind mount, you can create and manage volumes outside the scope of any container.

Let’s create a volume

$ docker volume create my-vol

List volumes:

$ docker volume ls

local my-vol

Inspect a volume by looking at the Mount section in the docker volume inspect

$ docker volume inspect my-vol
[
 {
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/volumes/my-vol/_data",
 "Name": "my-vol",
 "Options": {},
 "Scope": "local"
 }
]

Remove a volume

$ docker volume rm my-vol

3.3.1 Populate a volume using a container

This example starts an nginx container and populates the new volume nginx-vol with the contents of the container’s /var/log/nginx directory, which is where Nginx stores its log files.

$ docker run -d -p 8889:80 --name=jupytertest --mount source=jupyter-vol,target=/var/log/jupyter username/jupyter:latest

So, we now have a copy of Jupyter volume running inside a Docker container on our machine, and our host machine’s port 5000 maps directly to that copy of Jupyter’s port 80. Let’s use curl to do a quick test request:

cat jupyter-vol/_data/access.log

Use docker inspect jupyter-vol to verify that the volume was created and mounted correctly. Look for the Mounts section:

"Mounts": [
 {
 "Type": "volume",
 "Name": "jupyter-vol",
 "Source": "/var/lib/docker/volumes/jupyter-vol/_data",
 "Destination": "/var/log/jupyter",
 "Driver": "local",
 "Mode": "z",
 "RW": true,
 "Propagation": ""
 }
],

This shows that the mount is a volume, it shows the correct source and destination, and that the mount is read-write.

After running either of these examples, run the following commands to clean up the containers and volumes.

$ docker stop jupytertest

$ docker rm jupytertest

$ docker volume rm jupyter-vol

3.4 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.

Tip

If you are developing new Docker applications, consider using named volumes instead. You can’t use Docker CLI commands to directly manage bind mounts.

[image: bind_mount]

Warning

One side effect of using bind mounts, for better or for worse, is that you can change the host filesystem via processes running in a container, including creating, modifying, or deleting important system files or directories. This is a powerful ability which can have security implications, including impacting non-Docker processes on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not automatically create it for you, but generates an error.

3.2.1 Start a container with a bind mount

$ mkdir data

$ docker run -p 8888:8888 --name jupytertest --mount type=bind,source="$(pwd)"/data,target=/var/log/jupyter username/jupyter:latest

Use docker inspect jupytertest to verify that the bind mount was created correctly. Look for the “Mounts” section

This shows that the mount is a bind mount, it shows the correct source and target, it shows that the mount is read-write, and that the propagation is set to rprivate.

Stop the container:

$ docker rm -f juptertest

3.4.1 Use a read-only bind mount

For some development applications, the container needs to write into the bind mount, so changes are propagated back to the Docker host. At other times, the container only needs read access.

This example modifies the one above but mounts the directory as a read-only bind mount, by adding ro to the (empty by default) list of options, after the mount point within the container. Where multiple options are present, separate them by commas.

$ docker run -d -p 8888:8888 --name jupytertest --mount type=bind,source="$(pwd)"/data,target=/var/log/jupyter,readonly username/jupyter:latest

Use docker inspect jupytertest to verify that the bind mount was created correctly. Look for the Mounts section:

Stop the container:

$ docker rm -f jupytertest

Remove the volume:

$ docker volume rm jupytertest

3.3 tmpfs Mounts

tmpfs mounts: A tmpfs mount is not persisted on disk, either on the Docker host or within a container. It can be used by a container during the lifetime of the container, to store non-persistent state or sensitive information. For instance, internally, swarm services use tmpfs mounts to mount secrets into a service’s containers.

[image: tmpfs]

Volumes and bind mounts are mounted into the container’s filesystem by default, and their contents are stored on the host machine. There may be cases where you do not want to store a container’s data on the host machine, but you also don’t want to write the data into the container’s writable layer, for performance or security reasons, or if the data relates to non-persistent application state. An example might be a temporary one-time password that the container’s application creates and uses as-needed. To give the container access to the data without writing it anywhere permanently, you can use a tmpfs mount, which is only stored in the host machine’s memory (or swap, if memory is low). When the container stops, the tmpfs mount is removed. If a container is committed, the tmpfs mount is not saved.

$ docker run -d -p 8888:8888 --name jupytertest --mount type=tmpfs,target=/var/log/jupyter username/jupyter:latest

Use docker inspect jupytertest to verify that the bind mount was created correctly. Look for the Mounts section:

$ docker inspect jupytertest

You can see from the above output that the Source filed is empty which indicates that the contents are not avaible on Docker host or host file system.

Stop the container:

$ docker rm -f jupytertest

Remove the volume:

$ docker volume rm jupytertest

4. Docker Compose for multi-container apps

Docker Compose is a tool for defining and running your multi-container Docker applications.

Main advantages of Docker compose include:

	Your applications can be defined in a YAML file where all the options that you used in docker run are now defined (Reproducibility).

	It allows you to manage your application as a single entity rather than dealing with individual containers (Simplicity).

Let’s now create a simple web app with Docker Compose using Flask (which you already seen before) and Redis. We will end up with a Flask container and a Redis container all on one host.

Note

The code for the above compose example is available here [https://github.com/upendrak/compose_flask]

	You’ll need a directory for your project on your host machine:

$ mkdir compose_flask && cd compose_flask

	Add the following to requirements.txt inside compose_flask directory:

flask
redis

	Copy and paste the following code into a new file called app.py inside compose_flask directory:

from flask import Flask
from redis import Redis

app = Flask(__name__)
redis = Redis(host='redis', port=6379)

@app.route('/')
def hello():
 redis.incr('hits')
 return 'This Compose/Flask demo has been viewed %s time(s).' % redis.get('hits')

if __name__ == "__main__":
 app.run(host="0.0.0.0", debug=True)

	Create a Dockerfile with the following code inside compose_flask directory:

FROM python:2.7
ADD . /code
WORKDIR /code
RUN pip install -r requirements.txt
CMD python app.py

	Add the following code to a new file, docker-compose.yml, in your project directory:

version: '2'
services:
 web:
 restart: always
 build: .
 ports:
 - "8888:5000"
 volumes:
 - .:/code
 depends_on:
 - redis
 redis:
 restart: always
 image: redis

A brief explanation of docker-compose.yml is as below:

	restart: always means that it will restart whenever it fails.

	We define two services, web and redis.

	The web service builds from the Dockerfile in the current directory.

	Forwards the container’s exposed port (5000) to port 8888 on the host.

	Mounts the project directory on the host to /code inside the container (allowing you to modify the code without having to rebuild the image).

	depends_on links the web service to the Redis service.

	The redis service uses the latest Redis image from Docker Hub.

Note

Docker for Mac and Docker Toolbox already include Compose along with other Docker apps, so Mac users do not need to install Compose separately.
Docker for Windows and Docker Toolbox already include Compose along with other Docker apps, so most Windows users do not need to install Compose separately.

For Linux users

sudo curl -L https://github.com/docker/compose/releases/download/1.19.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

	Build and Run with docker-compose up -d command

$ docker-compose up -d

Building web
Step 1/5 : FROM python:2.7
2.7: Pulling from library/python
f49cf87b52c1: Already exists
7b491c575b06: Already exists
b313b08bab3b: Already exists
51d6678c3f0e: Already exists
09f35bd58db2: Already exists
f7e0c30e74c6: Pull complete
c308c099d654: Pull complete
339478b61728: Pull complete
Digest: sha256:8cb593cb9cd1834429f0b4953a25617a8457e2c79b3e111c0f70bffd21acc467
Status: Downloaded newer image for python:2.7
 ---> 9e92c8430ba0
Step 2/5 : ADD . /code
 ---> 746bcecfc3c9
Step 3/5 : WORKDIR /code
 ---> c4cf3d6cb147
Removing intermediate container 84d850371a36
Step 4/5 : RUN pip install -r requirements.txt
 ---> Running in d74c2e1cfbf7
Collecting flask (from -r requirements.txt (line 1))
 Downloading Flask-0.12.2-py2.py3-none-any.whl (83kB)
Collecting redis (from -r requirements.txt (line 2))
 Downloading redis-2.10.6-py2.py3-none-any.whl (64kB)
Collecting itsdangerous>=0.21 (from flask->-r requirements.txt (line 1))
 Downloading itsdangerous-0.24.tar.gz (46kB)
Collecting Jinja2>=2.4 (from flask->-r requirements.txt (line 1))
 Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)
Collecting Werkzeug>=0.7 (from flask->-r requirements.txt (line 1))
 Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)
Collecting click>=2.0 (from flask->-r requirements.txt (line 1))
 Downloading click-6.7-py2.py3-none-any.whl (71kB)
Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->flask->-r requirements.txt (line 1))
 Downloading MarkupSafe-1.0.tar.gz
Building wheels for collected packages: itsdangerous, MarkupSafe
 Running setup.py bdist_wheel for itsdangerous: started
 Running setup.py bdist_wheel for itsdangerous: finished with status 'done'
 Stored in directory: /root/.cache/pip/wheels/fc/a8/66/24d655233c757e178d45dea2de22a04c6d92766abfb741129a
 Running setup.py bdist_wheel for MarkupSafe: started
 Running setup.py bdist_wheel for MarkupSafe: finished with status 'done'
 Stored in directory: /root/.cache/pip/wheels/88/a7/30/e39a54a87bcbe25308fa3ca64e8ddc75d9b3e5afa21ee32d57
Successfully built itsdangerous MarkupSafe
Installing collected packages: itsdangerous, MarkupSafe, Jinja2, Werkzeug, click, flask, redis
Successfully installed Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1 click-6.7 flask-0.12.2 itsdangerous-0.24 redis-2.10.6
 ---> 5cc574ff32ed
Removing intermediate container d74c2e1cfbf7
Step 5/5 : CMD python app.py
 ---> Running in 3ddb7040e8be
 ---> e911b8e8979f
Removing intermediate container 3ddb7040e8be
Successfully built e911b8e8979f
Successfully tagged composeflask_web:latest

And that’s it! You should be able to see the Flask application running on http://localhost:8888 or <ipaddress>:8888

[image: docker-compose]

$ cat output.txt
Prediction of DecisionTreeClassifier:['apple' 'orange' 'apple']

Index

License for CyVerse Documentation (Version 2.0 - May 2020)

Documentation contained in this repo is made available under at CC BY 4.0 License: https://creativecommons.org/licenses/by/4.0/legalcode

You may:

	Share—copy and redistribute the material in any medium or format

	Adapt—remix, transform, and build upon the material

<<<<<<< HEAD
for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow these license terms:

Attribution— You must give appropriate credit (mentioning that your work is derived from work that is Copyright (c) CyVerse and, where practical, linking to http://www.cyverse.org/), provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions—You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. With the understanding that:

	You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

	No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

This license is superseded by and subject to any and all other polices of CyVerse as described at: http://www.cyverse.org/policies; CyVerse is based upon work supported by the National Science Foundation under Grant No. DBI-0735191 and DBI-1265383.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

for any purpose, even commercially. The licensor cannot revoke these freedoms as long as
you follow these license terms:

Attribution— You must give appropriate credit (mentioning that your work is derived
from work that is Copyright (c) CyVerse and, where practical, linking to
http://www.cyverse.org/), provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

No additional restrictions—You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits. With the understanding
that:

	You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

	No warranties are given. The license may not give you all of the permissions necessary
for your intended use. For example, other rights such as publicity, privacy, or moral
rights may limit how you use the material.

This license is superseded by and subject to any and all other polices of CyVerse as
described at: http://www.cyverse.org/policies; CyVerse is based upon work supported by
the National Science Foundation under Grant No. DBI-0735191, DBI-1265383, and DBI-1743442

Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

e8ccd3b52784fdedab398cd92f975326702a4903

foss-2021

Documentation for CyVerse Learning’s Foundations of Spring 2021 Open Science Skills course.

Course will take place February 9-April 21, 2021, online.

Contents are organized by subject, rather than day, with links to each day from the agenda (getting_started/schedule.rst).

name: Triage for Release
about: Describe this issue template’s purpose here.
title: Triage for [Project Title] Release [X.X.X]
labels: 2.0 Release
assignees: ‘’

This is a checklist issue. As we review each repo we should check the following
items.

1. Check on file versions (all files below should have a version comment in the first line of the file)

	[] misc/static/cyverse.css is version 2.0

	[] misc/static/cyverse.js is version 2.0

	[] misc/static/detail-expand.css is version 2.0

	[] misc/static/intercom-script-for-learning.js is version 2.0

	[] misc/static/question-answer.js is version 2.0

	[] misc/static/jquery.min.js is version 2.0

	[] misc/cyverse_spinx_conf.py is version 2.0

	[] conf.py is version 2.0

	[] cyverse_rst_defined_substitutions.txt is version 2.0

	[] README.md is version 2.0

2. Check on the following required formatting for all pages

	[] All .rst pages begin with the following

.. include:: cyverse_rst_defined_substitutions.txt
.. include:: custom_urls.txt

 |CyVerse_logo|_

|Home_Icon|_
`Learning Center Home <http://learning.cyverse.org/>`_

	[] Documentation contains maintainer info on index.rst or the appropriate
first page

Manual Maintainer(s)

Who to contact if this manual needs fixing. You can also email
`Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_

.. list-table::
 :header-rows: 1

 * - Maintainer
 - Institution
 - Contact
 * - Your Name
 - CyVerse / UA
 - Yourname@email.com

	[] Documentation contains the fix/improve instructions on all .rst pages

Fix or improve this documentation

- Search for an answer:
 |CyVerse Learning Center|
- Ask us for help:
 click |Intercom| on the lower right-hand side of the page
- Report an issue or submit a change:
 |Github Repo Link|
- Send feedback: `Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_

	[] All hyperlinks in documentation are on the repo’s custom_urls.txt or cyverse_rst_defined_substitutions.txt
Note: We want to avoid:

	Best practice is to AVOID inline hyperlinks

	Where possible links should NOT be on the .rst page but on a single
document that is included. (e.g. custom_urls.txt or cyverse_rst_defined_substitutions.txt)

	Links should have the form below and open in a new tab:

 .. |Link Title| raw:: html

 Link Title

3. Overall quality

	[] Maintainer is assigned and has approved the content

	[] Editor has checked for quality (spelling, formatting, etc.)

	[] Sample/test data is available with anonymous/public read access
in the appropriate directory at /iplant/home/shared/cyverse_training

 Importing Docker .rst

Docker hands-on exercises

Use case 1: Deploy a custom Docker image

	Download the sample code from https://github.com/Azure-Samples/docker-django-webapp-linux.git

	Build the image using the Dockerfile in that repo using docker build command

	Run an instance from that image

	Verify the web app and container are functioning correctly

Use case 2: Simple Bioinformatics example

Let’s say if you find a cool tool/software and want to run it on your computer and as we found out in the morning session, it’s not always easy to install the tool onto your computer or on a server natively. Since this workshop is about containers, let’s containerize this tool.

For this simple hands-on exercise, let’s containerize fastqe tool - https://github.com/lonsbio/fastqe. For those of you who are not from Bioinformatics, this tool generates read one or more FASTQ files, then it will compute quality stats for each file and print those stats as emoji… for some reason.

[image: fastqe]

Given a fastq file in Illumina 1.8+/Sanger format, calculate the mean (rounded) score for each position and print a corresponding emoji!

Tip

Natively you would install this tool like pip install fastqe. Now think of how you can dockerize this with appropriate base image and dependencies

After dockerizing the tool, for this exercise we don’t have to bind mount the volume but just print the fastqe help and make sure that it is actually working.

Tip

Natively you would print the help of the tool as fastqe -h

1. Data Management Hands-on

Form the “Introduction to Docker” session this morning, we learned that a running Docker container is an isolated environment created from a Docker image. This means, although it is possible to store data within the “writable layer” of a container, there are some limitations:

	The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of the container if another process needs it.

	A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t easily move the data somewhere else.

Docker offers three different ways to mount data into a container from the Docker host: volumes, bind mounts, or tmpfs volumes. For simplicity, we will only use bind mounts in our hands-on session, even though volumes is the more powerful and usable option for most use cases.

1.1 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.

[image: ../_images/bind_mount.png]

Warning

A side effect of using bind mounts, for better or for worse, is that you can change the host filesystem via processes running in a container, including creating, modifying, or deleting important system files or directories. This is a powerful ability which can have security implications, including impacting non-Docker processes on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not automatically create it for you, but generates an error.

Let’s clone a git repository to obtain our data sets:

$ git clone https://github.com/CyVerse-learning-materials/ccw-2019-astro.git

We can cd into the HOPS work directory, and mount it to /root as we launch the eventhorizontelescope/hops container:

$ cd ccw-2019-astro/hops
$ ls
1234
$ docker run -it --rm --name hops -v $PWD:/root eventhorizontelescope/hops
Setup HOPS v3.19 with HOPS_ROOT=/root for x86_64-3.19

You will start at the /root work directory and the host data 1234 is available in it:

$ pwd
/root
$ ls
1234

You can open another terminal and use docker inspect hops | grep -A9 Mounts to verify that the bind mount was created correctly. Looking for the “Mounts” section,

$ docker inspect hops | grep -A9 Mounts
"Mounts": [
 {
 "Type": "bind",
 "Source": "/Users/ckchan/ccw-2019-astro/hops",
 "Destination": "/root",
 "Mode": "",
 "RW": true,
 "Propagation": "rprivate"
 }
],

This shows that the mount is a bind mount with correct source and target. It also shows that the mount is read-write, and that the propagation is set to rprivate.

Use case 1: Processing VLBI data with HOPS in Docker

HOPS stands for the Haystack Observatory Postprocessing System. It is a standard data analysis tool in Very-long-baseline interferometry (VLBI). HOPS has a long history and it depends on legacy libraries. This makes it difficult to compile on modern Unix/Linux systems. Nevertheless, with Docker, you have already launched a HOPS envirnment that you can analysis VLBI data!

The most basic step in analysis VLBI is called “fringe fitting”, which we will perform in the running HOPS container by

$ ls 1234/No0055/
3C279.zxxerd L..zxxerd LL..zxxerd LW..zxxerd W..zxxerd WW..zxxerd
$ fourfit 1234
fourfit: Warning: No valid data for this pass for pol 2
fourfit: Warning: No valid data for this pass for pol 3
$ ls 1234/No0055/
3C279.zxxerd LL..zxxerd LL.B.2.zxxerd LW.B.3.zxxerd W..zxxerd WW.B.5.zxxerd
L..zxxerd LL.B.1.zxxerd LW..zxxerd LW.B.4.zxxerd WW..zxxerd

fourfit reads in the correlated data and create the so called “fringe files”. The warnings are normal because there are missing polarizations in the data. In order to see the result of the fringe fitting, you can use fplot:

$ fplot -d %04d.ps 1234
$ ls
0000.ps 0001.ps 0002.ps 0003.ps 0004.ps 1234

Congratulations! You just created 4 fringe plots that show all important information of the VLBI experiment! Now you can exit your HOPS container and open them on your host machine.

2. Jupyter Notebook Hands-on

Mounting a host directory is one way to make a container connect with the outside work. Another possible is through network by exposing a port.

Use case 2: Processing Galaxy Simulation with Jupyter in Docker

In this second hands-on, we will use Docker to run a “ready to go” Jupyter notebook in a container. We will expose the port 8888 from the container to the localhost so that you can connect to the notebook.

Inside the ccw-2019-astro git repository that you downloaded earlier, there is a sample Galaxy simulation:

 $ pwd
 /Users/ckchan/ccw-2019-astro/hops
 $ cd ../galaxy/
 $ pwd
 /Users/ckchan/ccw-2019-astro/galaxy

 # Specify the uid of the jovyan user. Useful to mount host volumes with specific file ownership. For this option to take effect, you must run the container with --user root

 $ docker run -it --rm -v $PWD:/home/jovyan/work -p 8888:8888 -e NB_UID=$(id -u) --user root astrocontainers/jupyter
 Set username to: jovyan
 usermod: no changes
 Set jovyan UID to: 1329
 Executing the command: jupyter notebook
 [I 23:36:09.446 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
 [W 23:36:09.686 NotebookApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not recommended.
 [I 23:36:09.722 NotebookApp] JupyterLab beta preview extension loaded from /opt/conda/lib/python3.6/site-packages/jupyterlab
 [I 23:36:09.722 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
 [I 23:36:09.730 NotebookApp] Serving notebooks from local directory: /home/jovyan
 [I 23:36:09.730 NotebookApp] 0 active kernels
 [I 23:36:09.730 NotebookApp] The Jupyter Notebook is running at:
 [I 23:36:09.730 NotebookApp] http://[all ip addresses on your system]:8888/?token=a81dbeec92b286df393bb484fdf53efffab410fd64ec8702
 [I 23:36:09.730 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
 [C 23:36:09.731 NotebookApp]
 Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
 http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478

The last line is a URL that we need to copy and paste into our browser to access our new Jupyter Notebook:

http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478

Warning

Do not copy and paste the above URL in your browser as this URL is specific to my environment.

[image: ../_images/jn_login.png]
You should be greeted by your own containerised Jupyter service! Now open galaxy/InClassLab7_Template_wSolutions.ipynb and try analysis a Galaxy simulation!

[image: ../_images/jn_galaxy.png]
To shut down the container, simply hit Ctrl-C in the terminal/command prompt twice. Your work will all be saved on your actual machine in the path we set in our Docker compose file. And there you have it—a quick and easy way to start using Jupyter notebooks with the magic of Docker.

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Discovery Environment

[image: DE_icon]

DE Features

	Use hundreds of bioinformatics Apps without the command line (or with, if you prefer)

	Batch and interactive modes

	Seamlessly integrated with data and high performance computing – not dependent on your hardware

	Create and publish Apps and workflows so anyone can use them

	Analysis history and provenance – “avoid forensic bioinformatics”

	Securetly and easily manage, share, and publish data

Using the DE

Data Management [https://github.com/CyVerse-learning-materials/foss-2020/tree/master/CyVerse/de-data-manage.rst]
Data Analysis [https://github.com/CyVerse-learning-materials/foss-2020/tree/master/CyVerse/de-data-analysis.rst]

Additional resources

	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]

	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]

	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Creating Workflows

[image: DE_icon]

Additional resources

	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]

	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]

	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 _images/DE_analyses.png
@ CyVerse Discovery Environment

n

£~ Analyses

View App Type

= Analyses c Refresh All v All v Q

Start Date \» End Date

2018-11-07 2018-11-07

JupyterLab-0.0.2_VernetData rwalls JupyterLab-0.0.2 14:39:17 16:56:39 Completed e
’ . ’ 2018-11-07 2018-11-07 .
shiny-0.10.2.2_analysis1 rwalls shiny-0.10.2.2 10:48:29 11:00:33 Canceled e
2018-08-22 2018-08-22 .
RAXML_Start_Tree_8.2.11_49-1 rwalls RAXML Start Tree 8.2.11 16:47:58 16:55:23 Completed e
’ 2018-08-22 2018-08-22 .
Parser_3.0.20_analysis1 rwalls Parser 3.0.20 11:26:47 13:01:39 Completed e
M cordmmn meialla iimarbar Ink 2018-08-13 2018-0918

&

Analyses

_images/DE_apps_operation.png
@ CyVerse Discovery Environment

L lEl o))

Apps~ Workflow v Share ~ i Refresh | Search Apps & Manage Tools [Switch View
Categories <« | Operation >> Alignment >> Sequence alignment >> Pairwise sequence alignment
‘ My Apps ‘ Topic H Operation H HPC ‘ Sort By: | Name v Filter: |All v
4 [|] Alignment
4 [|] sequence alignment APPLES_conservation : LN 4 V2 Best Hit for Blat Output :
[Genome alignment '
Global alignment
2 Local al " Uk Cyverse (-‘ Roger Barthelson
ocal alignmen
S & ©) B e kA AQR)

i Multiple sequence alignment

i Pairwise sequence alignment
> [f] Read mapping

i Sequence-to-profile alignment

MUSCLE 0.0.0 Muscle-3.8.31
s OTA e
4 p

<;
i Tree-based sequence alignment <’ Alice Minotto Sheldon McKay
[l structure alignment agave (0) de Tk (19
> [f] Analysis

> [f] Annotation progressiveMauve
.- [1 Assemblv =X

s
KLY
W

504

Y
>

«

>l

_images/DE_blank.png
@ CyVerse Discovery Environment

_images/DE_communities.png

